已知拋物線y2=2px的準線的方程為x=-1,過點(1,0)作傾斜角為
π4
的直線l交該拋物線于兩點(x1,y1),B(x2,y2).
求(1)p的值;(2)弦長|AB|.
分析:(1)由準線的方程為x=-1可求p的值;
(2)直線l:y=x-1,與y2=4x聯(lián)立,利用拋物線過焦點的弦長公式|AB|=x1+x2+2=8.可求
解答:解:(1)由準線的方程為x=-1,可知:
p
2
=1
,即p=2
(2)易得直線l:y=x-1,與y2=4x聯(lián)立
y=x-1
y2=4x
,
消去x得y2-4y-4=0,y1+y2=4,y1y2=-4,∴x1+x2=y1+y2+2=6,
所以:弦長|AB|=8.
點評:本題主要考查拋物線的性質(zhì)及拋物線定義的運用,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=2px(p>0).過動點M(a,0)且斜率為1的直線l與該拋物線交于不同的兩點A、B,|AB|≤2p.
(1)求a的取值范圍;
(2)若線段AB的垂直平分線交x軸于點N,求△NAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=2px(p>0)的焦點為F,準線為l.
(1)求拋物線上任意一點Q到定點N(2p,0)的最近距離;
(2)過點F作一直線與拋物線相交于A,B兩點,并在準線l上任取一點M,當M不在x軸上時,證明:
kMA+kMBkMF
是一個定值,并求出這個值.(其中kMA,kMB,kMF分別表示直線MA,MB,MF的斜率)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=2px(p>0).過動點M(a,0)且斜率為1的直線l與該拋物線交于不同的兩點A、B,|AB|≤2p.求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•聊城一模)已知拋物線y2=2px(p>0),過點M(2p,0)的直線與拋物線相交于A,B,
OA
OB
=
0
0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知拋物線y2=2px(p>0),M(2p,0),A、B是拋物線上的兩點.求證:直線AB經(jīng)過點M的充要條件是OA⊥OB,其中O是坐標原點.

查看答案和解析>>

同步練習冊答案