函數(shù)f(x)可導,則
lim
△x→0
f(1+△x)-f(1)
2△x
等于( 。
A、f′(1)
B、2f′(1)
C、
1
2
f(1)
D、f′(2)
考點:變化的快慢與變化率
專題:導數(shù)的概念及應用
分析:利用導數(shù)的定義即可得出.
解答:解:
lim
△x→0
f(1+△x)-f(1)
2△x
=
1
2
lim
△x→0
f(1+△x)-f(1)
△x
=
1
2
f(1)

故選:C.
點評:本題考查了導數(shù)的定義,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知長方體ABCD-A1B1C1D1的四個頂點的坐標分別為A(0,0,0)、B(1,0,0)、D(0,2,0)、A1(0,0,3).則該長方體對角線的長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

冪函數(shù)y=x m2-3m-4(m∈Z)的圖象如圖所示,則m的值為( 。
A、-1<m<4B、0或2
C、1或3D、0,1,2或3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線的點斜式方程是y-2=3(x+1),那么此直線的斜率為( 。
A、
1
3
B、
1
2
C、2
D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
m
1-x2
,x∈(-1,1]
1-|x-2|,x∈(1,3]
,其中m>0,且函數(shù)f(x)滿足f(x+4)=f(x).若F(x)=3f(x)-x恰有5個零點,則實數(shù)m的取值范圍是(  )
A、(
15
3
7
)
B、(
15
3
8
3
)
C、(
4
3
,
7
3
)
D、(
4
3
8
3
)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若字母x,y,z表示的幾何圖形是直線或平面,且命題“若x⊥y,y∥z,則x⊥z”成立,則字母x,y,z在空間表示的下面四中幾何圖形情況中不能是(  )
A、x,y,z都是直線
B、x,y,z都是平面
C、x,z是平面,y是直線
D、x,y是直線,z是平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

棱長為1的正方體ABCD-A1B1C1D1被以A為球心,AB為半徑的球相截,則所截得幾何體(球內部分)的表面積為( 。
A、
4
B、
8
C、π
D、
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b,c∈(0,1),則對于(1-a)b,(1-b)c,(1-c)a說法正確的是( 。
A、不能都大于
1
4
B、都大于
1
4
C、都小于
1
4
D、至少有一個大于
1
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知棱長為2的正方體(上底面無蓋)內部有一個球,與其各個面均相切,在正方體內壁與球外壁間將滿水,現(xiàn)將球向上提升,當球恰好與水面相切時,則正方體的上底面截球所得圓的面積等于(  )
A、
π3
9
B、
π2(6-π)
9
C、
6π-π3
3
D、
π3-2π
3

查看答案和解析>>

同步練習冊答案