已知圓C與兩圓x2+(y+4)2=1,x2+(y-2)2=1外切,圓C的圓心軌跡方程為L,設(shè)L上的點(diǎn)與點(diǎn)M(x,y)的距離的最小值為m,點(diǎn)F(0,1)與點(diǎn)M(x,y)的距離為n.
(Ⅰ)求圓C的圓心軌跡L的方程;
(Ⅱ)求滿足條件m=n的點(diǎn)M的軌跡Q的方程;
(Ⅲ)試探究軌跡Q上是否存在點(diǎn)B(x1,y1),使得過點(diǎn)B的切線與兩坐標(biāo)軸圍成的三角形的面積等于.若存在,請求出點(diǎn)B的坐標(biāo);若不存在,請說明理由.
【答案】分析:(Ⅰ)確定兩圓心分別為C1(0,-4)、C2(0,2),由題意得CC1=CC2,從而可求圓心C的軌跡是線段C1C2的垂直平分線方程;
(Ⅱ)因?yàn)閙=n,所以M(x,y)到直線y=-1的距離與到點(diǎn)F(0,1)的距離相等,故點(diǎn)M的軌跡Q是以y=-1為準(zhǔn)線,點(diǎn)F(0,1)為焦點(diǎn),頂點(diǎn)在原點(diǎn)的拋物線,從而可得軌跡Q的方程;
(Ⅲ)設(shè)出切線方程,求出切線與兩坐標(biāo)軸圍成的三角形的面積,利用S=,即可求得結(jié)論.
解答:解:(Ⅰ)兩圓半徑都為1,兩圓心分別為C1(0,-4)、C2(0,2),
由題意得CC1=CC2,可知圓心C的軌跡是線段C1C2的垂直平分線,C1C2的中點(diǎn)為(0,-1),直線C1C2的斜率等于零,故圓心C的軌跡是線段C1C2的垂直平分線方程為y=-1,即圓C的圓心軌跡L的方程為y=-1.  (4分)
(Ⅱ)因?yàn)閙=n,所以M(x,y)到直線y=-1的距離與到點(diǎn)F(0,1)的距離相等,
故點(diǎn)M的軌跡Q是以y=-1為準(zhǔn)線,點(diǎn)F(0,1)為焦點(diǎn),頂點(diǎn)在原點(diǎn)的拋物線,
=1,即p=2,所以,軌跡Q的方程是x2=4y;                 (8分)
(Ⅲ)由(Ⅱ)得,,所以過點(diǎn)B的切線的斜率為
設(shè)切線方程為,
令x=0得y=,令y=0得
因?yàn)辄c(diǎn)B在x2=4y上,所以
所以切線與兩坐標(biāo)軸圍成的三角形的面積為S==
設(shè)S=,即得|x1|=2,所以x1=±2
當(dāng)x1=2時,y1=1,當(dāng)x1=-2時,y1=1,所以點(diǎn)B的坐標(biāo)為(2,1)或(-2,1).(14分)
點(diǎn)評:本題考查軌跡方程,考查拋物線的定義,考查切線方程,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•肇慶一模)已知圓C與兩圓x2+(y+4)2=1,x2+(y-2)2=1外切,圓C的圓心軌跡方程為L,設(shè)L上的點(diǎn)與點(diǎn)M(x,y)的距離的最小值為m,點(diǎn)F(0,1)與點(diǎn)M(x,y)的距離為n.
(Ⅰ)求圓C的圓心軌跡L的方程;
(Ⅱ)求滿足條件m=n的點(diǎn)M的軌跡Q的方程;
(Ⅲ)試探究軌跡Q上是否存在點(diǎn)B(x1,y1),使得過點(diǎn)B的切線與兩坐標(biāo)軸圍成的三角形的面積等于
12
.若存在,請求出點(diǎn)B的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓C與兩圓x2+(y+4)2=1,x2+(y-2)2=1外切,圓C的圓心軌跡方程為L,設(shè)L上的點(diǎn)與點(diǎn)M(x,y)的距離的最小值為m,點(diǎn)F(0,1)與點(diǎn)M(x,y)的距離為n.
(Ⅰ)求圓C的圓心軌跡L的方程;
(Ⅱ)求滿足條件m=n的點(diǎn)M的軌跡Q的方程;
(Ⅲ)試探究軌跡Q上是否存在點(diǎn)B(x1,y1),使得過點(diǎn)B的切線與兩坐標(biāo)軸圍成的三角形的面積等于數(shù)學(xué)公式.若存在,請求出點(diǎn)B的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:肇慶一模 題型:解答題

已知圓C與兩圓x2+(y+4)2=1,x2+(y-2)2=1外切,圓C的圓心軌跡方程為L,設(shè)L上的點(diǎn)與點(diǎn)M(x,y)的距離的最小值為m,點(diǎn)F(0,1)與點(diǎn)M(x,y)的距離為n.
(Ⅰ)求圓C的圓心軌跡L的方程;
(Ⅱ)求滿足條件m=n的點(diǎn)M的軌跡Q的方程;
(Ⅲ)試探究軌跡Q上是否存在點(diǎn)B(x1,y1),使得過點(diǎn)B的切線與兩坐標(biāo)軸圍成的三角形的面積等于
1
2
.若存在,請求出點(diǎn)B的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年廣東省肇慶市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

已知圓C與兩圓x2+(y+4)2=1,x2+(y-2)2=1外切,圓C的圓心軌跡方程為L,設(shè)L上的點(diǎn)與點(diǎn)M(x,y)的距離的最小值為m,點(diǎn)F(0,1)與點(diǎn)M(x,y)的距離為n.
(Ⅰ)求圓C的圓心軌跡L的方程;
(Ⅱ)求滿足條件m=n的點(diǎn)M的軌跡Q的方程;
(Ⅲ)試探究軌跡Q上是否存在點(diǎn)B(x1,y1),使得過點(diǎn)B的切線與兩坐標(biāo)軸圍成的三角形的面積等于.若存在,請求出點(diǎn)B的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案