1.?dāng)?shù)列{an}的前n項(xiàng)和為Sn=2n+1-2,數(shù)列{bn}是首項(xiàng)為a1,數(shù)列{bn}滿足bn+2-2bn+1+bn=0(n∈N*),且b2=4.
(1)求數(shù)列{an}與{bn}的通項(xiàng)公式;
(2)若cn=$\frac{2}{{(n+1){b_n}}}$(n∈N*),求數(shù)列{cn}的前n項(xiàng)和Tn
(3)設(shè)dn=an•bn,數(shù)列{dn}的前n項(xiàng)和Mn,若Mn>2m-1恒成立,試求m的取值范圍.

分析 (1)求數(shù)列{an}的通項(xiàng)公式:分兩種情況:當(dāng)n=1和當(dāng)n≥2、當(dāng)n≥2時(shí),根據(jù)已知條件Sn=2n+1-2推知an=Sn-Sn-1=2n+1-2n=2n;
數(shù)列{bn}的通項(xiàng)公式:結(jié)合等比數(shù)列的定義進(jìn)行解答;
(2)利用(2)的結(jié)論得到:cn=$\frac{1}{n(n+1)}$,采用裂項(xiàng)相消法求數(shù)列{cn}的前n項(xiàng)和Tn
(3)Mn=(n-1)2n+2+4是遞增的,根據(jù)函數(shù)的單調(diào)性解答即可.

解答 解:(1)當(dāng)n≥2時(shí),an=Sn-Sn-1=2n+1-2n=2n
又a1=S1=21+1-2=2=21,也滿足上式,所以數(shù)列{an}的通項(xiàng)公式為:an=2n
因?yàn)閎1=a1=2,b2=4,
所以數(shù)列{bn}的通項(xiàng)公式為bn=2n;
(2)cn=$\frac{2}{(n+1)bn}$=$\frac{1}{n(n+1)}$,
數(shù)列{cn}的前n項(xiàng)和Tn=$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{n×(n+1)}$=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$.
(3)dn=an•bn=2n2n=2n+1•n,
Mn=(n-1)2n+2+4,
因?yàn)镸n是遞增的,
所以當(dāng)n=1時(shí)Mn的最大值為4,
所以2m-1<4即m<$\frac{5}{2}$.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式、利用“當(dāng)n=1時(shí),a1=S1;當(dāng)n≥2時(shí),an=Sn-Sn-1”求數(shù)列的通項(xiàng)公式、“裂項(xiàng)求和”方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知x,y∈R+,且滿足$\frac{x}{2}+\frac{y}{3}=1$,則xy的最大值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知二次函數(shù)y=f(x)的圖象經(jīng)過坐標(biāo)原點(diǎn),其導(dǎo)數(shù)為f′(x)=2x+1,數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,Sn)(n∈N*)均在函數(shù)y=f(x)的圖象上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{3}{{a}_{n}{a}_{n+1}}$,Tn是數(shù)列{bn}的前n項(xiàng)和,求使得Tn<$\frac{m}{16}$對(duì)所有n∈N*都成立的最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在直角坐標(biāo)系xOy中,以原點(diǎn)為O極點(diǎn),以x軸正半軸為極軸,圓C的極坐標(biāo)方程為$ρ=4\sqrt{2}sin(\frac{3π}{4}-θ)$
(1)將圓C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(2)過點(diǎn)P(0,2)作斜率為$\sqrt{3}$直線l與圓C交于A,B兩點(diǎn),試求$|{\frac{1}{|PA|}-\frac{1}{|PB|}}|$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}各項(xiàng)都為正數(shù),且a1=e,lnan+1-lnan=1(n∈N*
(1)求數(shù)列{lnan}的通項(xiàng)公式;
(2)令bn=$\frac{1}{ln{a}_{n+1}•ln{a}_{n}}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.經(jīng)過點(diǎn)P(4,1)的直線l交雙曲線$\frac{x^2}{12}-\frac{y^2}{4}$=1于M、N兩點(diǎn),若點(diǎn)P恰為線段MN中點(diǎn),則直線l的方程為4x-3y-13=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,$\frac{{S}_{n+1}}{n+1}$-$\frac{{S}_{n}}{n}$=$\frac{n+c}{n+1}$(c∈R,n=1,2,3,…),且S1,$\frac{{S}_{2}}{2}$,$\frac{{S}_{3}}{3}$成等差數(shù)列.
(1)求c的值;
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.向量$\overrightarrow{a}$=(1,1),$\overrightarrow$=(2,t),若$\overrightarrow{a}$⊥$\overrightarrow$,則實(shí)數(shù)t的值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)直線l的方程為(a-1)x+y+a+3=0,(a∈R).
(1)若直線l在兩坐標(biāo)軸上截距的絕對(duì)值相等,求直線l的方程;
(2)若直線l不經(jīng)過第一象限,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案