1.若將函數(shù)f(x)=1+sinωx(0<ω<4,ω∈Z)的圖象向右平移$\frac{π}{3}$個(gè)單位后,得到函數(shù)y=g(x)的圖象,且y=g(x)的圖象的一條對(duì)稱軸方程為x=$\frac{π}{2}$,則分f(x)的最小正周期為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

分析 由條件利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)圖象的對(duì)稱性,求得ω的值,進(jìn)而利用正弦函數(shù)的周期公式即可計(jì)算得解.

解答 解:將函數(shù)f(x)=1+sinωx的圖象向右平移$\frac{π}{3}$個(gè)單位后,
得到的圖象對(duì)應(yīng)的解析式為:y=g(x)=sin[ω(x-$\frac{π}{3}$)]+1=sin(ωx-$\frac{ωπ}{3}$)+1,
∵y=g(x)的圖象的一條對(duì)稱軸方程為x=$\frac{π}{2}$,
∴$\frac{π}{2}$ω-$\frac{ωπ}{3}$=kπ+$\frac{π}{2}$,k∈Z,解得:ω=6k+3,k∈Z,
∵0<ω<4,
∴ω=3,可得:f(x)=1+sin3x,
∴f(x)的最小正周期為T=$\frac{2π}{3}$.
故選:C.

點(diǎn)評(píng) 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦函數(shù)圖象的對(duì)稱性,三角函數(shù)周期公式的應(yīng)用,考查了數(shù)形結(jié)合思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.$f(x)=Asin(ωx+φ)(A>0,ω>0,-\frac{π}{2}<φ<\frac{π}{2})$的部分圖象如圖所示,則函數(shù)f(x)的解析式為f(x)=2sin(2x+$\frac{π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,∠BAC=$\frac{2π}{3}$,P為∠BAC內(nèi)部一點(diǎn),過點(diǎn)P的直線與∠BAC的兩邊交于點(diǎn)B,C,且PA⊥AC,AP=$\sqrt{3}$.
(Ⅰ)若AB=3,求PC;
(Ⅱ)設(shè)∠APC=θ,求$\frac{1}{PB}$+$\frac{1}{PC}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+tcosα}\\{y=tsinα}\end{array}\right.$(t為參數(shù),α∈[0,π)),在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C2:ρ=4cosθ.
(Ⅰ)求C2的直角坐標(biāo)方程;
(Ⅱ)若曲線C1與C2交于A,B兩點(diǎn),且|AB|>$\sqrt{7}$,求α的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{2}$=1右焦點(diǎn)為F,P為雙曲線左支點(diǎn)上一點(diǎn),點(diǎn)A(0,$\sqrt{2}$),則△APF周長的最小值為(  )
A.4(1+$\sqrt{2}$)B.4+$\sqrt{2}$C.2($\sqrt{2}$+$\sqrt{6}$)D.$\sqrt{6}$+3$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.古代數(shù)學(xué)家楊輝在沈括的隙積數(shù)的基礎(chǔ)上想到:若由大小相等的圓球剁成類似于正四棱臺(tái)的方垛,上底由a×a個(gè)球組成,楊輝給出求方垛中圓球總數(shù)的公式如下:S=$\frac{n}{3}$(a2+b2+ab+$\frac{b-a}{2}$),根據(jù)以上材料,我們可得12+22+…+n2=$\frac{n(n+1)(2n+1)}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)函數(shù)f(x)的定義域?yàn)镽,f(x)=$\left\{{\begin{array}{l}{x,0≤x<1}\\{{{(\frac{1}{3})}^x}-1,-1≤x<0}\end{array}}$且對(duì)任意的x∈R都有f(x+1)=f(x-1),若在區(qū)間[-1,5)上函數(shù)g(x)=f(x)-mx-m恰有4個(gè)不同零點(diǎn),則實(shí)數(shù)m的取值范圍是( 。
A.$({0,\frac{1}{4}}]$B.$({\frac{1}{4},\frac{1}{2}}]$C.$[{\frac{1}{4},\frac{1}{2}})$D.$({0,\frac{1}{2}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在斜三棱柱ABC-A1B1C1中,側(cè)面ACC1A1⊥底面ABC,底面ABC是等腰直角三角形,CA=CB,A1B⊥AC1
(1)求證:平面A1BC⊥平面ABC1;
(2)若直線AA1與底面ABC所成的角為60°,求直線AA1與平面ABC1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.執(zhí)行如圖所示的程序框圖,若輸入的a,b分別為36,28,則輸出的a=( 。
A.4B.8C.12D.20

查看答案和解析>>

同步練習(xí)冊(cè)答案