觀察下列問題:
已知(1-2x)2013=a+a1x+a2x2+a3x3+…+a2013x2013,
令x=0,可得a=1,
令x=1,可得a+a1+a2+a3+…+a2013=2013=-1,
令x=-1,可得a-a1+a2+a3+…-a2013=2013=32013,
請仿照這種“賦值法”,求出 =   
【答案】分析:仿照這種“賦值法”,令x=,可得a+=0.再令x=0,可得a=1,從而求得的值.
解答:解:∵已知(1-2x)2013=a+a1x+a2x2+a3x3+…+a2013x2013
令x=,可得a+=0.
再令x=0,可得a=1,
=0-1=-1,
故答案為:-1
點評:本題主要考查二項式定理的應用,注意根據(jù)題意,分析所給代數(shù)式的特點,通過給二項式的x賦值,求展開式的系數(shù)和,可以簡便的求出答案,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

觀察下列問題:
已知(1-2x)2013=a0+a1x+a2x2+a3x3+…+a2013x2013,
令x=0,可得a0=1,
令x=1,可得a0+a1+a2+a3+…+a2013=(1-2•1)2013=-1,
令x=-1,可得a0-a1+a2+a3+…-a2013=(1+2•1)2013=32013
請仿照這種“賦值法”,求出
a1
2
+
a2
22
+
a3
23
+…+
a2013
22013
=
-1
-1

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆河北省高一第二學期期中理科數(shù)學試卷(解析版) 題型:解答題

(本題12分)某校從參加高一年級期中考試的學生中隨機抽出60名學生,將其數(shù)學成績(均為整數(shù))分成六段[40,50)、[50,60)、…、[90,100)后得到如下部分頻率分布直方圖.[來源:ZXXK]

觀察圖形的信息,回答下列問題:(Ⅰ)求分數(shù)在[70,80)內(nèi)的頻率,并補全這個頻率分布直方圖;

(Ⅱ)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表,據(jù)此估計本次考試的平均分;

(Ⅲ)已知甲的考試成績?yōu)?5分,若從成績在[40,60)的學生中隨機抽取2人,求抽到學生甲的的概率.

 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

觀察下列問題:
已知(1-2x)2013=a0+a1x+a2x2+a3x3+…+a2013x2013,
令x=0,可得a0=1,
令x=1,可得a0+a1+a2+a3+…+a2013=(1-2•1)2013=-1,
令x=-1,可得a0-a1+a2+a3+…-a2013=(1+2•1)2013=32013,
請仿照這種“賦值法”,求出
a1
2
+
a2
22
+
a3
23
+…+
a2013
22013
=______.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

觀察下列問題:

已知=,

,可得,

,可得,

,可得,

請仿照這種“賦值法”,求出_________。

查看答案和解析>>

同步練習冊答案