4.(文)設(shè)f(x)=sinx-2cosx+1的導(dǎo)函數(shù)為f′(x),則f′($\frac{3π}{4}$)=$\frac{\sqrt{2}}{2}$.

分析 先求導(dǎo),再代值計(jì)算即可.

解答 解:f(x)=sinx-2cosx+1的導(dǎo)函數(shù)為f′(x)=cosx+2sinx,
∴f′($\frac{3π}{4}$)=cos$\frac{3π}{4}$+2sin$\frac{3π}{4}$=-$\frac{\sqrt{2}}{2}$+2×$\frac{\sqrt{2}}{2}$=$\frac{\sqrt{2}}{2}$,
故答案為:$\frac{\sqrt{2}}{2}$

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的運(yùn)算法則和導(dǎo)數(shù)值得求法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.調(diào)查某高中1000名學(xué)生的肥胖情況,得如表:
  偏瘦正常 肥胖 
 女生(人) 100163 
 男生(人) x 187 z
已知從這批學(xué)生中隨機(jī)抽取1名學(xué)生,抽到偏瘦男生的概率為0.15
(Ⅰ)求x的值
(Ⅱ)若用分層抽樣的方法,從這批學(xué)生中隨機(jī)抽取100名,問應(yīng)在肥胖學(xué)生中抽多少名?
(Ⅲ)已知y≥194,z≥193,求肥胖學(xué)生中男生不少于女生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x(x>0)}\\{{3}^{x}(x≤0)}\end{array}\right.$,且函數(shù)F(x)=f(x)+x-a有且僅有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是a≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=($\frac{1}{2}$)x-2x
(1)若f(x)=$\frac{15}{4}$,求x的值;
(2)若不等式f(2m-mcosθ)+f(-1-cosθ)<f(0)對(duì)所有θ∈[0,$\frac{π}{2}$]都成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè)兩條直線x+y-2=0,3x-y-2=0的交點(diǎn)為M,若點(diǎn)M在圓(x-m)2+y2=5內(nèi),則實(shí)數(shù)m的取值范圍為(-1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)直線l1:mx-2my-6=0與l2:(3-m)x+my+m2-3m=0.
(1)若l1∥l2,求l1,l2之間的距離;
(2)若直線l2與兩坐標(biāo)軸的正半軸圍成的三角形的面積最大,求直線l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若集合A={2,3},B={x|x2-5x+6=0},則A∩B=( 。
A.{x=2,x=3}B.{(2,3)}C.{2,3}D.2,3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.給出定義:設(shè)f'(x)是函數(shù)y=f(x)的導(dǎo)函數(shù),f''(x)是函數(shù)f'(x)的導(dǎo)函數(shù),若f''(x)=0方程有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)f(x)的“拐點(diǎn)”.已知函數(shù)f(x)=2x+sinx-cosx的拐點(diǎn)是M(x0,f(x0)),則直線OM的斜率為( 。
A.2B.$\frac{1}{2}$C.1D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知等差數(shù)列{dn}的前n項(xiàng)和${S_n}={n^2}+n$,且d2,d4為等比數(shù)列數(shù)列{an}的第2、3項(xiàng).
(1)求{an}的通項(xiàng)方式;
(2)設(shè)${b_n}=\frac{n}{a_n}$,求證:b1+b2+…+bn<2.

查看答案和解析>>

同步練習(xí)冊(cè)答案