已知數(shù)列{an}是一個等差數(shù)列且S9=-18,S11=22,
(1)求{an}通項公式;
(2)求{an}的前n項和Sn的最小值.
考點:數(shù)列的求和,等差數(shù)列的性質(zhì)
專題:等差數(shù)列與等比數(shù)列
分析:(1)根據(jù)等差數(shù)列的前n項和公式,建立方程組求出首項和公差,即可求{an}通項公式;
(2)求出數(shù)列的前n項和,利用二次函數(shù)的性質(zhì)即可求出最值.
解答: 解:(1)設(shè){an}的公差為d,則
S9=9a1+
9×8
2
d=-18
S11=11a1+
11×10
2
d=22
,
∴a1=-18,d=4,
∴an=a1+(n-1)d=4n-22.
(2)法一:Sn=
n(a1+an)
2
=
n(-18+4n-22)
2
=2n2-20n
=2(n-5)2-50,
∴n=5時,Sn取得最小值-50. …(9分).
法二:由an=4n-22<0,得n<
22
4
,
∴當(dāng)n=5時,Sn取得最小值S5=-18×5+
5×4
2
×4=-50
點評:本題主要考查等差數(shù)列的通項公式和前n項和公式的應(yīng)用,要求熟練掌握相應(yīng)的公式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=(x2-2x-3)+(x-3)i(x∈R,i為虛數(shù)單位)為純虛數(shù),則x的值為( 。
A、-1或3B、0C、3D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x2-3x=0,x∈R},B={x|x2+3x=0,x∈R},則A∩B=(  )
A、{0}
B、{0,-3}
C、{0,3}
D、{0,-3,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖四邊形ABEF是等腰梯形,AB∥EF,AF=BE=2,EF=4
2
,AB=2
2
,ABCD是矩形.AD⊥面ABEF.Q、M分別是AC,EF的中點,P是BM中點.
(Ⅰ)求證:PQ∥平面BCE;
(Ⅱ)求證:AM⊥平面BCM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)正數(shù)列{an}的前{an}項和為n,且2
Sn
=an+1

(1)求數(shù)列{an}的首項a1;
(2)求數(shù)列{an}的通項公式;
(3)設(shè)bn=
1
anan+1
,Tn是數(shù)列{bn}的前{an}項和,求使得Tn
m
18
對所有n∈N*都成立的最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩人約定晚上6點至晚上7點在某處見面,并約定甲若早到應(yīng)等乙半小時,乙若早到則不需等甲.若甲、乙兩人均在晚上6點至晚上7點之間到達見面地點,求甲、乙兩人能見面的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項和為Sn,已知2Sn+1=Sn+λ(n∈N*,λ為常數(shù)),a1=2,a2=1.
(1)求數(shù)列{an}的通項公式;
(2)求所有滿足等式
Sn-m
Sn+1-m
=
1
am+1
成立的正整數(shù)m,n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

實數(shù)a分別取什么值時,復(fù)數(shù)z=a2-a-6+(a2+2a-15)i
(1)是實數(shù);
(2)是純虛數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖程序框圖:
(1)如果在判斷框內(nèi)填入“a≤0.05”,請寫出輸出的所有數(shù)值;
(2)如果在判斷框內(nèi)填入“n≥100”,試求出所有輸出數(shù)字的和.

查看答案和解析>>

同步練習(xí)冊答案