已知函數(shù)f(x)=logm

(1)判斷f(x)的奇偶性并證明;

(2)若f(x)的定義域為[α,β](β>α>0),判斷f(x)在定義域上的增減性,并加以證明;

(3)若0<m<1,使f(x)的值域為[logmm(β-1),logmm(α-1)]的定義域區(qū)間[α,β](β>α>0)是否存在?若存在,求出[α,β],若不存在,請說明理由.

答案:
解析:

  解:(1)由的定義域為,關(guān)于原點對稱.

  

  為奇函數(shù)  3分

  (2)的定義域為[](),則[].設(shè)[],則,且,,  5分

  ,  6分

  ∴當時,,即  7分

  當時,,即  8分

  故當時,為減函數(shù);時,為增函數(shù)  9分

  (3)由(1)得,當時,在[]為遞減函數(shù),∴若存在定義域[](),使值域為[],則有  12分

  ∴ ∴是方程的兩個解  13分

  解得當時,[]=,

  當時,方程組無解,即[]不存在  14分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2-2x+1,g(x)=ln(x+1).

(1)求函數(shù)y=g(x)-x在[0,1]上的最小值;

(2)當a≥時,函數(shù)t(x)=f(x)+g(x)的圖像記為曲線C,曲線C在點(0,1)處的切線為l,是否存在a使l與曲線C有且僅有一個公共點?若存在,求出所有a的值;否則,說明理由.

(3)當x≥0時,g(x)≥-f(x)+恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆湖北省大治二中高二3月聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=x3+x-16,

(1)求曲線y=f(x)在點(2,-6)處的切線的方程;

(2)直線l為曲線y=f(x)的切線,且經(jīng)過原點,求直線l的方程及切點坐標;

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年陜西省高二下期第一次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=x3-3x及y=f(x)上一點P(1,-2),過點P作直線l.

(1)求使直線l和y=f(x)相切且以P為切點的直線方程;

(2)求使直線l和y=f(x)相切且切點異于P的直線方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:新課標高三數(shù)學(xué)導(dǎo)數(shù)專項訓(xùn)練(河北) 題型:解答題

已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在x=1處的切線為l:3x-y+1=0,當x=時,y=f(x)有極值.

(1)求a、b、c的值;

(2)求y=f(x)在[-3,1]上的最大值和最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:新課標高三數(shù)學(xué)導(dǎo)數(shù)專項訓(xùn)練(河北) 題型:解答題

已知函數(shù)f(x)=x3-2x2+ax(x∈R,a∈R),在曲線y=f(x)的所有切線中,有且僅有一條切線l與直線y=x垂直.

(1)求a的值和切線l的方程;

(2)設(shè)曲線y=f(x)上任一點處的切線的傾斜角為θ,求θ的取值范圍

 

查看答案和解析>>

同步練習(xí)冊答案