已知直線l的參數(shù)方程:
x=2t
y=1+4t
(t為參數(shù)),曲線C的極坐標(biāo)方程:ρ=2
2
sin(θ+
π
4
)
,求直線l被曲線C截得的弦長.
分析:先將直線l的參數(shù)方程化為普通方程,將圓C的極坐標(biāo)方程化為普通方程,再利用直線與圓的位置關(guān)系進(jìn)行求解即可.
解答:解:將直線l的參數(shù)方程化為普通方程為:y=2x+(12分)
將圓C的極坐標(biāo)方程化為普通方程為:(x-1)2+(y-1)2=2(4分)
從圓方程中可知:圓心C(1,1),半徑r=
2
,
所以,圓心C到直線l的距離d=
|2×1-1+1|
22+(-1)2
=
2
5
2
=r
(6分)
所以直線l與圓C相交. (7分)
所以直線l被圓C截得的弦長為
2
30
5
.(10分)
點(diǎn)評:本小題主要考查直線的參數(shù)方程、簡單曲線的極坐標(biāo)方程、直線與圓相交的性質(zhì)等基礎(chǔ)知識,考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

C選修4-4:坐標(biāo)系與參數(shù)方程已知直線l的參數(shù)方程:
x=2t
y=1+4t
(t為參數(shù)),曲線C的極坐標(biāo)方程:ρ=2
2
sin(θ+
π
4
),求直線l被曲線C截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

極坐標(biāo)與參數(shù)方程:
已知直線l的參數(shù)方程是:
x=2t
y=1+4t
(t為參數(shù)),圓C的極坐標(biāo)方程是:ρ=2
2
sin(θ+
π
4
),試判斷直線l與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l的參數(shù)方程為
x=
1
2
t
y=2+
3
2
t
(t為參數(shù)),曲線C的極坐標(biāo)方程是ρ=
sinθ
1-sin2θ
以極點(diǎn)為原點(diǎn),極軸為x軸正方向建立直角坐標(biāo)系,點(diǎn)M(0,2),直線l與曲線C交于A,B兩點(diǎn).
(1)寫出直線l的普通方程與曲線C的直角坐標(biāo)方程;
(2)線段MA,MB長度分別記|MA|,|MB|,求|MA|•|MB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(坐標(biāo)系與參數(shù)方程選做題) 已知直線l的參數(shù)方程為
x=
2
2
t
y=1+
2
2
t
(t為參數(shù)),圓C的參數(shù)方程為
x=cosθ+2
y=sinθ
(θ為參數(shù)),則圓心C到直線l的距離為
3
2
2
3
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•香洲區(qū)模擬)已知直線L的參數(shù)方程為:
x=t
y=a+
3
t
(t為參數(shù)),圓C的參數(shù)方程為:
x=sinθ
y=cosθ+1
(θ為參數(shù)).若直線L與圓C有公共點(diǎn),則常數(shù)a的取值范圍是
[-1,3]
[-1,3]

查看答案和解析>>

同步練習(xí)冊答案