設(shè)數(shù)列{an}是公比大于1的等比數(shù)列,Sn為數(shù)列{an}的前n項和,己知S3=7,且a1+3,3a2,a3+4構(gòu)成等差數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)令bn=lna2n+1,n=1,2,3…,求數(shù)列{bn}的前n項的和Tn
考點:數(shù)列的求和,數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:(1)設(shè)出等比數(shù)列的公比,由已知列首項和公比的方程組,求解方程組得首項和公比,然后代入等比數(shù)列的通項公式得答案;
(2)把a2n+1代入bn=lna2n+1,得到數(shù)列{bn}是等差數(shù)列,然后利用等差數(shù)列的前n項和公式得答案.
解答: 解:(1)設(shè)等比數(shù)列{an}的公比為q(q>1),
由已知得
a1+a1q+a1q2=7
a1+3+a1q2+4
2
=3a1q
,解得
a1=1
q=2

an=a1qn-1=2n-1;
(2)由bn=lna2n+1,得
bn=ln22n=2nln2,
bn+1-bn=2(n+1)ln2-2nln2=2ln2.
∴數(shù)列{bn}是等差數(shù)列,
Tn=2nln2+
n(n-1)2ln2
2
=n(n+1)ln2
點評:本題考查了等比數(shù)列的通項公式,考查了等差數(shù)列的前n項和,是中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

有兩個投資項目A、B,根據(jù)市場調(diào)查與預測,A項目的利潤與投資成正比,其關(guān)系如圖甲,B項目的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖乙.(注:利潤與投資單位:萬元)

(1)分別將A、B兩個投資項目的利潤表示為投資x(萬元)的函數(shù)關(guān)系式f(x)和g(x),求y=f(x),y=g(x)在同一坐標系內(nèi)圍成封閉圖形的面積;
(2)現(xiàn)將x(0≤x≤10)萬元投資A項目,10-x萬元投資B項目.h(x)表示投資A項目所得利潤與投資B項目所得利潤之和.求h(x)的最大值,并指出x為何值時,h(x)取得最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求下列函數(shù)的值域
(1)y=
x2-2x+5
x-1
;
(2)若x、y滿足3x2+2y2=6x,求z=x2+y2的值域;
(3)f(x)=|2x+1|-|x-4|;
(4)y=x+
x-1
;
(5)f(x)=
x2+5
x2+4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=-
x+a
x+a+1
圖象的對稱中心橫坐標為3,則a=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=22x-2x+1+1.
(1)求f(log218+2log 
1
2
6);
(2)若x∈[-1,2],求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
lnx
a2
-x.
(1)若曲線y=f(x)在點(1,f(1))處的切線與x軸平行,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對一切正數(shù)x,都有f(x)≤-1恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x,y滿足(x-2)2+(y-1)2=1.
(1)求k=
y+1
x
的最大值;
(2)若x+y+m≥0恒成立,求實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)A、B是非空的數(shù)集,如果
 
,使
 
,那么就稱f:A→B為從集合A到集合B的一個函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若(a,b)是函數(shù)y=f(x)的單調(diào)增區(qū)間,x1,x2∈(a,b),且x1<x2,則有( 。
A、f(x1)>f(x2
B、f(x1)=f(x2
C、f(x1)<f(x2
D、以上都有可能

查看答案和解析>>

同步練習冊答案