已知數(shù)列{an}的前n項和為Sn,且滿足an+Sn=2.
(1)求數(shù)列{an}的通項公式;
(2)求證數(shù)列{an}中不存在任意三項按原來順序成等差數(shù)列;
(3)若從數(shù)列{an}中依次抽取一個無限多項的等比數(shù)列,使它的所有項和S滿足,這樣的等比數(shù)列有多少個?
解:(1)當(dāng)n=1時,a1+S1=2a1=2,則a1=1.
又an+Sn=2,
∴an+1+Sn+1=2,兩式相減得
∴{an}是首項為1,公比為的等比數(shù)列

(2)反證法:假設(shè)存在三項按原來順序成等差數(shù)列,記為ap+1,aq+1,ar+1(p<q<r)
,∴2●2r﹣q=2r﹣p+1(*)
又∵p<q<r
∴r﹣q,r﹣p∈N*
∴*式左邊是偶數(shù),右邊是奇數(shù),等式不成立
∴假設(shè)不成立原命題得證.
(3)設(shè)抽取的等比數(shù)列首項為,公比為,項數(shù)為k,
且滿足m,n,k∈N,m≥0,n≥1,k≥1,

又∵

整理得:
∵n≥1  ∴2m﹣n≤2m﹣1

∴m≥4
   ∴
∴m≥4
∴m=4將m=4代入①式整理得    ∴n≥4
經(jīng)驗證得n=1,2不滿足題意,n=3,4滿足題意.
綜上可得滿足題意的等比數(shù)列有兩個.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

19、已知數(shù)列{an}的前n項和Sn=n2(n∈N*),數(shù)列{bn}為等比數(shù)列,且滿足b1=a1,2b3=b4
(1)求數(shù)列{an},{bn}的通項公式;
(2)求數(shù)列{anbn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn=an2+bn(a、b∈R),且S25=100,則a12+a14等于( 。
A、16B、8C、4D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n2+n+1,那么它的通項公式為an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

13、已知數(shù)列{an}的前n項和為Sn=3n+a,若{an}為等比數(shù)列,則實數(shù)a的值為
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn滿足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通項公式an
(2)求Sn

查看答案和解析>>

同步練習(xí)冊答案