設(shè)等差數(shù)列{a}的前項(xiàng)和為Sn,a7=15,則S13=________

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)設(shè)函數(shù)g(x)=
x-1
2
(x∈R)
,且數(shù)列{cn}滿足c1=1,cn=g(cn-1)(n∈N,n>1);求數(shù)列{cn}的通項(xiàng)公式.
(2)設(shè)等差數(shù)列{an}、{bn}的前n項(xiàng)和分別為Sn和Tn,且
a3
b4+b6
+
a7
b2+b8
=
2
5
,
Sn
Tn
=
An+1
2n+7
,S2=6;求常數(shù)A的值及{an}的通項(xiàng)公式.
(3)若dn=
an(n為正奇數(shù))
cn(n為正偶數(shù))
,其中an、cn即為(1)、(2)中的數(shù)列{an}、{cn}的第n項(xiàng),試求d1+d2+…+dn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(5)設(shè)S是等差數(shù)列{a}的前n項(xiàng)和,若S=35,則a=

(A)8            (B)7            (C)6        (D)5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}、{bn}的前n項(xiàng)和分別為Sn和Tn,,S2=6;函數(shù)y=g(x)是函數(shù)f(x)=2x+1的反函數(shù),且cn=g(cn-1)(n∈N,n>1),c1=1.

(1)求常數(shù)A的值及函數(shù)y=g(x)的解析式;

(2)求數(shù)列{an}及{cn}的通項(xiàng)公式;

(3)若dn=,試求d1+d2+…+dn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年福建省高考60天沖刺訓(xùn)練數(shù)學(xué)試卷08(理科)(解析版) 題型:解答題

(1)設(shè)函數(shù),且數(shù)列{cn}滿足c1=1,cn=g(cn-1)(n∈N,n>1);求數(shù)列{cn}的通項(xiàng)公式.
(2)設(shè)等差數(shù)列{an}、{bn}的前n項(xiàng)和分別為Sn和Tn,且=,,S2=6;求常數(shù)A的值及{an}的通項(xiàng)公式.
(3)若,其中an、cn即為(1)、(2)中的數(shù)列{an}、{cn}的第n項(xiàng),試求d1+d2+…+dn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)第一輪基礎(chǔ)知識(shí)訓(xùn)練(08)(解析版) 題型:解答題

(1)設(shè)函數(shù),且數(shù)列{cn}滿足c1=1,cn=g(cn-1)(n∈N,n>1);求數(shù)列{cn}的通項(xiàng)公式.
(2)設(shè)等差數(shù)列{an}、{bn}的前n項(xiàng)和分別為Sn和Tn,且=,,S2=6;求常數(shù)A的值及{an}的通項(xiàng)公式.
(3)若,其中an、cn即為(1)、(2)中的數(shù)列{an}、{cn}的第n項(xiàng),試求d1+d2+…+dn

查看答案和解析>>

同步練習(xí)冊(cè)答案