設(shè)0<a<1,則三數(shù):a、aa、a aa的大小順序是
 
考點(diǎn):不等式比較大小
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:利用函數(shù)y=ax的單調(diào)性比較大小.
解答: 解:∵0<a<1,
∴y=ax是R上的減函數(shù),
∴a<aa,
∴a<aa<1,
∴aa>a aa>a;
故答案為:aa>a aa>a.
點(diǎn)評:本題考查了函數(shù)的單調(diào)性的應(yīng)用,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦點(diǎn)F是拋物線y2=8x的焦點(diǎn),兩曲線的一個公共點(diǎn)為P,且|PF|=5,則雙曲線的漸近線方程為( 。
A、y=±
1
2
x
B、y=±2x
C、y=±
3
3
x
D、y=±
3
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各組函數(shù)中為同一函數(shù)的是( 。
A、y=(
x
2與y=
x2
B、y=|x|與y=
x,(x>0)
-x,(x≤0)
C、f(x)=
x+1
x-1
與g(x)=
x2-1
D、y=x與y=a logax

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,連接它的四個頂點(diǎn)得到的四邊形的面積是4
2
,分別連接橢圓上一點(diǎn)(頂點(diǎn)除外)和橢圓的四個頂點(diǎn),連得線段所在四條直線的斜率的乘積為
1
4
,求這個橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x-lnx-m,g(x)=mx-1(m∈R).
(Ⅰ)若函數(shù)f(x)在點(diǎn)(1,f(1))處的切線方程為x-y=0,求實數(shù)m的值;
(Ⅱ)若直線y=-1與函數(shù)f(x)=2x-lnx-m的圖象無公共點(diǎn),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex-ax+1(a是常數(shù))在x=0處的切線斜率為-1.
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)當(dāng)x>0時,證明ex>x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(3,5,1)
,
b
=(2,2,3)
,則|2
a
-3
b
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

cos38°sin98°-cos52°sin188°的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
2+
2
3
=2
2
3
3+
3
8
=3
3
8
,
4+
4
15
=4
4
15
,…,若
7+
a
b
=7
a
b
,(a、b均為正實數(shù)),則類比以上等式,可推測a、b的值,進(jìn)而可得a+b=
 

查看答案和解析>>

同步練習(xí)冊答案