(09年萊西一中模擬理)(12分)

已知等腰梯形PDCB中(如圖1),PB=3,DC=1,PD=BC=,APB邊上一點,且PA=1,將△PAD沿AD折起,使面

PADABCD(如圖2)。

   (Ⅰ)證明:平面PAD⊥PCD;

   (Ⅱ)試在棱PB上確定一點M,使截面AMC把幾何體分成的兩部分;

   (Ⅲ)在M滿足(Ⅱ)的情況下,判斷直線AM是否平行面PCD.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 解析:(I)證明:依題意知:

                      …………2分

   …4分

   (II)由(I)知平面ABCD

    ∴平面PAB⊥平面ABCD.               …………4分

   在PB上取一點M,作MNAB,則MN⊥平面ABCD,

    設MN=h

    則

                …………6分

    要使

    即MPB的中點.                                      …………8分

   (III)以A為原點,AD、ABAP所在直線為x,y,z軸,

    建立如圖所示的空間直角坐標系

   

A(0,0,0),B(0,2,0),

    C(1,1,0),D(1,0,0),

    P(0,0,1),M(0,1,

    由(I)知平面,則

    的法向量。           …………10分

    又為等腰

   

    因為

所以AM與平面PCD不平行.    …………12分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(09年萊西一中模擬理)(14分)已知點H(-3,0),點P軸上,點Q軸的正半軸上,點M在直線PQ上,且滿足, .

(Ⅰ)當點P軸上移動時,求點M的軌跡C;

(Ⅱ)過定點作直線交軌跡CA、B兩點,ED點關于坐標原點O的對稱點,求證:;

(Ⅲ)在(Ⅱ)中,是否存在垂直于軸的直線被以AD為直徑的圓截得的弦長恒為定值?若存在求出的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(09年萊西一中模擬理)(12分)

是函數(shù)的一個極值點.

   (Ⅰ)求的關系式(用表示),并求的單調(diào)區(qū)間;

   (Ⅱ)設,使得成立?若存在,求的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(09年萊西一中模擬文)(12分)某工廠統(tǒng)計資料顯示,產(chǎn)品次品率與日產(chǎn)量(單位件,)的關系如下:

1

2

3

4

96

又知每生產(chǎn)一件正品盈利(為正常數(shù))元,每生產(chǎn)一件次品就損失元.

(Ⅰ)將該廠日盈利額(元)表示為日產(chǎn)量的函數(shù);

(Ⅱ)為了獲得最大贏利,該廠的日產(chǎn)量應定為多少件?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(09年萊西一中模擬理)(12分)

    已知將一枚質地不均勻的硬幣拋擲三次,三次正面均朝上的概率為

   (1)求拋擲這樣的硬幣三次,恰有兩次正面朝上的概率;

   (2)拋擲這樣的硬幣三次后,拋擲一枚質地均勻的硬幣一次,記四次拋擲后正面朝上的總次數(shù)為ξ,求隨機變量ξ的分布列及期望Eξ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(09年萊西一中模擬)(12分)如圖,一只螞蟻繞一個豎直放置的圓環(huán)逆時針勻速爬行,已知圓環(huán)的半徑為m,圓環(huán)的圓心距離地面的高度為,螞蟻每分鐘爬行一圈,若螞蟻的起始位置在最低點P0處.

(1)試確定在時刻t時螞蟻距離地面的高度;

(2)畫出函數(shù)時的圖象;

(3)在螞蟻繞圓環(huán)爬行的一圈內(nèi),有多長時間螞蟻距離地面超過m?

查看答案和解析>>

同步練習冊答案