精英家教網 > 高中數學 > 題目詳情
已知數列{an}中,a1=1,且點P(an,an+1)(n∈N*)在直線x-y+1=0上.
(1)求數列{an}的通項公式;
(2)若函數f(n)=
1
n+a1
+
1
n+a2
+
1
n+a3
+…+
1
n+an
(n∈N,且n≥2)
,求函數f(n)的最小值.
(1)由點P(an,an+1)在直線x-y+1=0上,
即an+1-an=1,且a1=1,數列{an}是以1為首項,1為公差的等差數列,
an=1+(n+1)•1=n(n≥2),a1=1同樣滿足,
所以an=n.
(2)f(n)=
1
n+1
+
1
n+2
++
1
2n
,f(n+1)=
1
n+2
+
1
n+3
+
1
n+4
+
1
2n+1
+
1
2n+2
,f(n+1)-f(n)=
1
2n+1
+
1
2n+2
-
1
n+1
1
2n+2
+
1
2n+2
-
1
n+1
=0

所以f(n)是單調遞增,
故f(n)的最小值是f(2)=
7
12
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知數列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,則
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}中,a1=1,an+1=
an
1+2an
,則{an}的通項公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求數列{an}的通項公式;
(2)求數列{
2n
an
}
的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}中,a1=
1
2
,Sn
為數列的前n項和,且Sn
1
an
的一個等比中項為n(n∈N*
),則
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}中,a1=1,2nan+1=(n+1)an,則數列{an}的通項公式為( 。
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步練習冊答案