已知函數(shù)

(Ⅰ)求函數(shù)fx)的最小正周期;

(Ⅱ)求函數(shù)f(x)在區(qū)間[-]上的值域.

本題主要考查三角函數(shù)式的化簡(jiǎn)、三角函數(shù)的圖像及性質(zhì),區(qū)間上三角函數(shù)的值域等.考查運(yùn)算能力和推理能力.

解:

(1)

                   

                   

                    

              

(2)

因?yàn)?SUB>在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,

所以   當(dāng)時(shí),取最大值1

又  當(dāng)時(shí),取最小值

所以 函數(shù) 在區(qū)間上的值域?yàn)?SUB>.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

例4、已知函數(shù)y=f(x)是定義在R上的周期函數(shù),周期T=5,函數(shù)y=f(x)(-1≤x≤1)是奇函數(shù).又知y=f(x)在[0,1]上是一次函數(shù),在[1,4]上是二次函數(shù),且在x=2時(shí)函數(shù)取得最小值-5.
①證明:f(1)+f(4)=0;②求y=f(x),x∈[1,4]的解析式;③求y=f(x)在[4,9]上的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2sinx+1.
(1)設(shè)常數(shù)ω>0,若y=f(ωx),在區(qū)間[-
π
2
3
]上是增函數(shù),求ω的取值范圍;
(2)當(dāng)x∈[-
π
6
,
3
]時(shí),g(x)=f(x)+m恰有兩個(gè)零點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年四川省成都七中高三數(shù)學(xué)專項(xiàng)訓(xùn)練:從集合到函數(shù)周期(解析版) 題型:解答題

例4、已知函數(shù)y=f(x)是定義在R上的周期函數(shù),周期T=5,函數(shù)y=f(x)(-1≤x≤1)是奇函數(shù).又知y=f(x)在[0,1]上是一次函數(shù),在[1,4]上是二次函數(shù),且在x=2時(shí)函數(shù)取得最小值-5.
①證明:f(1)+f(4)=0;②求y=f(x),x∈[1,4]的解析式;③求y=f(x)在[4,9]上的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:高考數(shù)學(xué)一輪復(fù)習(xí)必備(第09課時(shí)):第二章 函數(shù)-函數(shù)的解析式及定義域(解析版) 題型:解答題

例4、已知函數(shù)y=f(x)是定義在R上的周期函數(shù),周期T=5,函數(shù)y=f(x)(-1≤x≤1)是奇函數(shù).又知y=f(x)在[0,1]上是一次函數(shù),在[1,4]上是二次函數(shù),且在x=2時(shí)函數(shù)取得最小值-5.
①證明:f(1)+f(4)=0;②求y=f(x),x∈[1,4]的解析式;③求y=f(x)在[4,9]上的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)數(shù)學(xué)公式,其圖象過(guò)點(diǎn)(數(shù)學(xué)公式,數(shù)學(xué)公式).
(1)求φ的值及y=f(x)最小正周期;
(2)將函數(shù)y=f(x)的圖象上各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的數(shù)學(xué)公式,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求函數(shù)PF2在[0,數(shù)學(xué)公式]上的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案