【題目】已知直線,

(1)系數(shù)為什么值時,方程表示通過原點的直線;

(2)系數(shù)滿足什么關(guān)系時與坐標軸都相交;

(3)系數(shù)滿足什么條件時只與x軸相交;

(4)系數(shù)滿足什么條件時是x軸;

(5)設(shè)為直線上一點,證明:這條直線的方程可以寫成

【答案】見解析

【解析】

采用“代點法”,原點坐標滿足方程,即可求出結(jié)果

斜率存在且不為,所以乘積不等于

斜率不存在

軸即,則,

采用“代點法”,得到,再將其代入到原方程整理可得,得證

:(1)采用代點法,將(0,0)代入中得C=0,A、B不同為零

(2)直線與坐標軸都相交,說明橫縱截距均存在設(shè),得;設(shè),得均成立,因此系數(shù)

(3)直線只與x軸相交,就是指與y軸不相交——平行、重合均可因此直線方程將化成的形式,故為所求

(4)x軸的方程為,直線方程即可.(注意B可以不為1,即也可以等價轉(zhuǎn)化為.)

(5)運用代點法”. 在直線上,

滿足方程, ,

可化為,即,得證

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中, 底面, , , 是棱上一點.

I)求證:

II)若 分別是, 的中點,求證: 平面

III)若二面角的大小為,求線段的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一次商貿(mào)交易會上,商家在柜臺開展促銷抽獎活動,甲、乙兩人相約同一天上午去該柜臺參與抽獎.

(1)若抽獎規(guī)則是從一個裝有個紅球和 個白球的袋中一次取出個球,當兩個球同色時則中獎,求中獎概率;

(2)若甲計劃在之間趕到,乙計劃在之間趕到,求甲比乙提前到達的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C.

1)若直線過定點,且與圓C相切,求方程;

2)若圓D的半徑為3,圓心在直線上,且與圓C外切,求圓D方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系中,已知曲線C1的極坐標方程ρ2cos2θ=8,曲線C2的極坐標方程為θ= ,曲線C1 , C2相交于A,B兩點.以極點O為原點,極軸所在直線為x軸建立平面直角坐標系,已知直線l的參數(shù)方程為 (t為參數(shù)).
(1)求A,B兩點的極坐標;
(2)曲線C1與直線l分別相交于M,N兩點,求線段MN的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列的前項和為.

1求數(shù)列的通項公式;

2設(shè),,記數(shù)列的前項和.若對, 恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,橢圓短軸的一個端點與兩個焦點構(gòu)成的三角形的面積為.

(1)求橢圓的方程式;

(2)已知動直線與橢圓相交于兩點.

①若線段中點的橫坐標為,求斜率的值;

②已知點,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)滿足以下兩個條件的有窮數(shù)列, , 期待數(shù)列

;

.

)分別寫出一個單調(diào)遞增的階和期待數(shù)列”.

)若某期待數(shù)列是等差數(shù)列,求該數(shù)列的通項公式.

)記期待數(shù)列的前項和為,試證: .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,從參加環(huán)保知識競賽的學生中抽出名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如下,觀察圖形,回答下列問題:

(1)這一組的頻數(shù)、頻率分別是多少?

(2)估計這次環(huán)保知識競賽的及格率(分及以上為及格)和平均數(shù)?

查看答案和解析>>

同步練習冊答案