【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)當(dāng)時(shí),判斷并說明函數(shù)的零點(diǎn)個(gè)數(shù).若函數(shù)所有零點(diǎn)均在區(qū)間內(nèi),求的最小值.

【答案】1)當(dāng)時(shí),上單調(diào)遞增;當(dāng)時(shí),上單調(diào)遞增,在上單調(diào)遞減(2存在兩個(gè)零點(diǎn),,且,,詳見解析;的最小值為3

【解析】

1)函數(shù)求導(dǎo),根據(jù)二次函數(shù)的性質(zhì)分 ,三種情況分類討論求解..

2)當(dāng)時(shí),,當(dāng)時(shí),單調(diào)遞增,,,則,故不存在零點(diǎn);然后從的定義域入手,分,,四種情況分類討論求解.

1的定義域?yàn)?/span>,

,

當(dāng)時(shí),,所以上單調(diào)遞增;

當(dāng)時(shí),,,所以上單調(diào)遞增;

當(dāng)時(shí),令,得(舍).

當(dāng)時(shí),,當(dāng),,

所以上單調(diào)遞增,在上單調(diào)遞減.

綜上所述,當(dāng)時(shí),上單調(diào)遞增;

當(dāng)時(shí),上單調(diào)遞增,在上單調(diào)遞減.

2)當(dāng)時(shí),

當(dāng)時(shí),單調(diào)遞增,,,則,故不存在零點(diǎn);

當(dāng)時(shí),,上單調(diào)遞減,

所以,

所以,單調(diào)遞增,

,

所以存在唯一,使得.

當(dāng)時(shí),,,

所以單調(diào)遞減,

,

所以存在,使得,

當(dāng)時(shí),,單調(diào)遞增;

當(dāng)時(shí),,單調(diào)遞減,

,,

因此,上恒成立,故不存在零點(diǎn).

當(dāng)時(shí),,所以單調(diào)遞減,

因?yàn)?/span>,所以,單調(diào)遞減,

,,

所以存在唯一,使得.

當(dāng)時(shí),,故不存在零點(diǎn).

綜上,存在兩個(gè)零點(diǎn),,且,,

因此的最小值為3.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】二手車經(jīng)銷商小王對其所經(jīng)營的A型號二手汽車的使用年數(shù)x與銷售價(jià)格y(單位:萬元/輛)進(jìn)行整理,得到如下數(shù)據(jù):

如圖是z關(guān)于x的折線圖:

1)由折線圖可以看出,可以用線性回歸模型擬合zx的關(guān)系,請用相關(guān)系數(shù)r加以說明(注:若相關(guān)系數(shù)︱r0.75,則認(rèn)為兩個(gè)變量相關(guān)程度較強(qiáng));

2)求y關(guān)于x的回歸方程并預(yù)測某輛A型號二手車當(dāng)使用年數(shù)為9年時(shí)售價(jià)約為多少?(小數(shù)點(diǎn)后面保留兩位有效數(shù)字);

3)基于成本的考慮,該型號二手車的售價(jià)不得低于7118元,請根據(jù)(2)求出的回歸方程預(yù)測在收購該型號的二手車時(shí)車輛的使用年限不得超過多少年?

參考公式:回歸方程中斜率和截距的最小二乘法估計(jì)公式分別為:

,

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=x|xa|aR.

1)當(dāng)f2+f(﹣2)>4時(shí),求a的取值范圍;

2)若a0x,y∈(﹣a],不等式fx≤|y+3|+|ya|恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在創(chuàng)建“全國文明衛(wèi)生城”過程中,運(yùn)城市“創(chuàng)城辦”為了調(diào)查市民對創(chuàng)城工作的了解情況,進(jìn)行了一次創(chuàng)城知識問卷調(diào)查(一位市民只能參加一次),通過隨機(jī)抽樣,得到參加問卷調(diào)查的人的得分統(tǒng)計(jì)結(jié)果如表所示:.

組別

頻數(shù)

1)由頻數(shù)分布表可以大致認(rèn)為,此次問卷調(diào)查的得分似為這人得分的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表),利用該正態(tài)分布,求;

2)在(1)的條件下,“創(chuàng)城辦”為此次參加問卷調(diào)查的市民制定如下獎(jiǎng)勵(lì)方案:

①得分不低于的可以獲贈(zèng)次隨機(jī)話費(fèi),得分低于的可以獲贈(zèng)次隨機(jī)話費(fèi);

②每次獲贈(zèng)的隨機(jī)話費(fèi)和對應(yīng)的概率為:

贈(zèng)送話費(fèi)的金額(單位:元)

概率

現(xiàn)有市民甲參加此次問卷調(diào)查,記(單位:元)為該市民參加問卷調(diào)查獲贈(zèng)的話費(fèi),求的分布列與數(shù)學(xué)期望.

附:參考數(shù)據(jù)與公式:,若,則,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓臺的軸截面為等腰梯形,,,,圓臺的側(cè)面積為.若點(diǎn)C,D分別為圓上的動(dòng)點(diǎn)且點(diǎn)C,D在平面的同側(cè).

1)求證:;

2)若,則當(dāng)三棱錐的體積取最大值時(shí),求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓的中心為坐標(biāo)原點(diǎn)焦點(diǎn)在軸上,右頂點(diǎn)到右焦點(diǎn)的距離與它到右準(zhǔn)線的距離之比為

1)求橢圓的標(biāo)準(zhǔn)方程;

2)若是橢圓上關(guān)于軸對稱的任意兩點(diǎn),設(shè),連接交橢圓于另一點(diǎn).求證:直線過定點(diǎn)并求出點(diǎn)的坐標(biāo);

3)在(2)的條件下,過點(diǎn)的直線交橢圓兩點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2016520日以來,廣東自西北到東南出現(xiàn)了一次明顯降雨.為了對某地的降雨情況進(jìn)行統(tǒng)計(jì),氣象部門對當(dāng)?shù)?/span>20~289天內(nèi)記錄了其中100小時(shí)的降雨情況,得到每小時(shí)降雨情況的頻率分布直方圖如下:

若根據(jù)往年防汛經(jīng)驗(yàn),每小時(shí)降雨量在時(shí),要保持二級警戒,每小時(shí)降雨量在時(shí),要保持一級警戒.

1)若以每組的中點(diǎn)代表該組數(shù)據(jù)值,求這100小時(shí)內(nèi)每小時(shí)的平均降雨量;

2)若從記錄的這100小時(shí)中按照警戒級別采用分層抽樣的方法抽取10小時(shí)進(jìn)行深度分析.再從這10小時(shí)中隨機(jī)抽取3小時(shí),求抽取的這3小時(shí)中屬于一級警戒時(shí)間的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓,點(diǎn)在圓內(nèi),在過點(diǎn)P所作的圓的所有弦中,弦長最小值為.

1)求實(shí)數(shù)a的值;

2)若點(diǎn)M為圓外的動(dòng)點(diǎn),過點(diǎn)M向圓C所作的兩條切線始終互相垂直,求點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國古代中的“禮、樂、射、御、書、數(shù)”合稱“六藝”.“禮”,主要指德育;“樂”,主要指美育;“射”和“御”,就是體育和勞動(dòng);“書”,指各種歷史文化知識;“數(shù)”,數(shù)學(xué).某校國學(xué)社團(tuán)開展“六藝”課程講座活動(dòng),每藝安排一節(jié),連排六節(jié),一天課程講座排課有如下要求:“樂”不排在第一節(jié),“射”和“御”兩門課程不相鄰,則“六藝”課程講座不同的排課順序共有( )種.

A.408B.120C.156D.240

查看答案和解析>>

同步練習(xí)冊答案