【題目】已知函數(shù).

(1)如圖,設(shè)直線將坐標(biāo)平面分成四個區(qū)域(不含邊界),若函數(shù)的圖象恰好位于其中一個區(qū)域內(nèi),判斷其所在的區(qū)域并求對應(yīng)的的取值范圍;

(2)當(dāng)時,求證:,有.

【答案】(1);(2)證明見解析.

【解析】試題分析:(1)根據(jù)定義域確定只能在3,4區(qū)域,再根據(jù)確定只能在4,轉(zhuǎn)化為不等式恒成立,分離變量得.利用導(dǎo)數(shù)求函數(shù)單調(diào)性,根據(jù)單調(diào)性確定函數(shù)最值,即得的取值范圍;(2)作差函數(shù),再利用二次求導(dǎo)確定為單調(diào)遞減函數(shù),最后根據(jù),得,即得結(jié)論.

試題解析:(1)函數(shù)的定義域?yàn)?/span>,且當(dāng)時,

又直線恰好通過原點(diǎn),

∴函數(shù)的圖象應(yīng)位于區(qū)域Ⅳ內(nèi),

于是可得,

,∴

,則

時,,單調(diào)遞增;

時,,單調(diào)遞減.

的取值范圍是

(2)∵

設(shè),

,

,

,

為單調(diào)遞減函數(shù),

不妨設(shè),令),

可得

,∵單調(diào)遞減函數(shù),

,∴,為單調(diào)遞減函數(shù),

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)動點(diǎn)到定點(diǎn)的距離比它到軸的距離大,記點(diǎn)的軌跡為曲線.

(1)求點(diǎn)的軌跡方程;

(2)若圓心在曲線上的動圓過點(diǎn),試證明圓軸必相交,且截軸所得的弦長為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方體中邊長AB為2,P為正方形A1B1C1D1四邊上的動點(diǎn),O為底面正方形ABCD的中心,Q為正方形ABCD內(nèi)一點(diǎn),M,N分別為AB,BC上靠近A和C的三等分點(diǎn),若線段與OP相交且互相平分,則點(diǎn)Q的軌跡與線段MN形成的封閉圖形的面積為____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某籃球比賽采用7局4勝制,即若有一隊(duì)先勝4局,則此隊(duì)獲勝,比賽就此結(jié)束.由于參加比賽的兩隊(duì)實(shí)力相當(dāng),每局比賽兩隊(duì)獲勝的可能性均為.據(jù)以往資料統(tǒng)計(jì),第一局比賽組織者可獲得門票收入40萬元,以后每局比賽門票收入比上一局增加10萬元,則組織者在此次比賽中獲得的門票收入不少于390萬元的概率為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓: 的離心率為,拋物線:軸所得的線段長等于.軸的交點(diǎn)為,過點(diǎn)作直線相交于點(diǎn)直線分別與相交于.

(1)求證:;

(2)設(shè),的面積分別為, ,的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程為,直線,直線.以極點(diǎn)為原點(diǎn),極軸為軸的正半軸建立平面直角坐標(biāo)系.

(1)求直線的直角坐標(biāo)方程以及曲線的參數(shù)方程;

(2)已知直線與曲線交于兩點(diǎn),直線與曲線交于,兩點(diǎn),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個鋁合金窗分為上、下兩欄,四周框架和中間隔檔的材料為鋁合金,寬均為6,上欄與下欄的框內(nèi)高度(不含鋁合金部分)的比為1:2,此鋁合金窗占用的墻面面積為28800,設(shè)該鋁合金窗的寬和高分別為,鋁合金窗的透光部分的面積為.

(1)試用表示;

(2)若要使最大,則鋁合金窗的寬和高分別為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若恒成立,試確定實(shí)數(shù)的取值范圍;

(3)證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2018·邯鄲一模)若甲、乙兩類水果的質(zhì)量(單位:kg)分別服從正態(tài)分布N(μ1σ2)N(μ2,σ2),其正態(tài)分布的密度曲線如圖所示,則下列說法錯誤的是(  )

A. 乙類水果的質(zhì)量服從的正態(tài)分布的參數(shù)σ264

B. 甲類水果的質(zhì)量比乙類水果的質(zhì)量更集中

C. 甲類水果的平均質(zhì)量μ10.4 kg

D. 甲類水果的平均質(zhì)量比乙類水果的平均質(zhì)量小

查看答案和解析>>

同步練習(xí)冊答案