【題目】橢圓C: + =1(a>b>0)的離心率為 ,過(guò)左焦點(diǎn)任作直線l,交橢圓的上半部分于點(diǎn)M,當(dāng)l的斜率為 時(shí),|FM|=
(1)求橢圓C的方程;
(2)橢圓C上兩點(diǎn)A,B關(guān)于直線l對(duì)稱,求△AOB面積的最大值.

【答案】
(1)

解:依題意∴ ),∴ ,

又∵ ,解得a2=3,b2=2.

∴橢圓C的方程為:


(2)

解:依題意直線l不垂直x軸,

當(dāng)直線l的斜率k≠0時(shí),可設(shè)直線l的方程為:y=k(x+1)(k≠0)

則直線AB的方程為:y=﹣

聯(lián)立 ,得

…①.

設(shè)AB的中點(diǎn)為C,則xC=

點(diǎn)C在直線l上,∴ ,m=﹣2k﹣ …②

此時(shí) 與①矛盾,故k≠0時(shí)不成立.

當(dāng)直線l的斜率k=0時(shí),A(x0,y0),B(x0,﹣y0) (x0>0,y0>0)

△AOB面積s=

,∴ ..

∴△AOB面積的最大值為 ,當(dāng)且僅當(dāng) 時(shí)取等號(hào).


【解析】(1)根據(jù)離心率及弦長(zhǎng)構(gòu)造方程組,求得a,b. (2)當(dāng)直線l的斜率k≠0時(shí),可設(shè)直線l的方程為:y=k(x+1)(k≠0)
聯(lián)立直線與橢圓方程,由△>0得到k,m的關(guān)系式,再由對(duì)稱性求得k,m的關(guān)系式,此時(shí)k不存在.
當(dāng)直線l的斜率k=0時(shí),A(x0 , y0),B(x0 , ﹣y0) (x0>0,y0>0)△AOB面積s=
由均值不等式求解.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用橢圓的標(biāo)準(zhǔn)方程的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握橢圓標(biāo)準(zhǔn)方程焦點(diǎn)在x軸:,焦點(diǎn)在y軸:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某程序框圖如圖所示,則該程序運(yùn)行后輸出的結(jié)果為(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】分別是雙曲線的左右焦點(diǎn),過(guò)的直線與雙曲線的左右兩支分別交于兩點(diǎn).若為等邊三角形,則的面積為(

A. 8 B. C. D. 16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若ln(x+1)﹣1≤ax+b對(duì)任意x>﹣1的恒成立,則 的最小值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(2009年廣東卷文)某單位200名職工的年齡分布情況如圖2,現(xiàn)要從中抽取40名職工作樣本,用系統(tǒng)抽樣法,將全體職工隨機(jī)按1200編號(hào),并按編號(hào)順序平均分為40組(15號(hào),610號(hào),196200號(hào)).若第5組抽出的號(hào)碼為22,則第8組抽出的號(hào)碼應(yīng)是 。若用分層抽樣方法,則40歲以下年齡段應(yīng)抽取 .

2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程選講]
在直角坐標(biāo)系xOy中,圓C的方程為(x﹣1)2+y2= ,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,點(diǎn)M的極坐標(biāo)為(2,θ),過(guò)點(diǎn)M斜率為1的直線交圓C于A,B兩點(diǎn).
(1)求圓C的極坐標(biāo)方程;
(2)求|MA||MB|的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l與拋物線交于點(diǎn)A,B兩點(diǎn),與x軸交于點(diǎn)M,直線OA,OB的斜率之積為.

(1)證明:直線AB過(guò)定點(diǎn);

(2)以AB為直徑的圓P交x軸于E,F(xiàn)兩點(diǎn),O為坐標(biāo)原點(diǎn),求|OE||OF|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2-x+c定義在區(qū)間[0,1]上,x1,x2

[0,1],且x1≠x2,求證:

(1)f(0)=f(1);

(2)|f(x2)-f(x1)|<|x1-x2|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)=sin(ωx+ )(ω>0)的圖象與x軸的交點(diǎn)橫坐標(biāo)構(gòu)成一個(gè)公差為 的等差數(shù)列,要得到g(x)=cos(ωx+ )的圖象,可將f(x)的圖象(
A.向右平移 個(gè)單位
B.向左平移 個(gè)單位
C.向左平移 個(gè)單位
D.向右平移 個(gè)單位

查看答案和解析>>

同步練習(xí)冊(cè)答案