在矩形ABCD中,以DA所在直線為x軸,以DA中點(diǎn)O為坐標(biāo)原點(diǎn),建立如圖所示的平面直角坐標(biāo)系.已知點(diǎn)B的坐標(biāo)為(3,2),E、F為AD的兩個(gè)三等分點(diǎn),AC和BF交于點(diǎn)G,△BEG的外接圓為⊙H.
(1)求證:EG⊥BF;
(2)求⊙H的方程;
(3)設(shè)點(diǎn)P(0,b),過點(diǎn)P作直線與⊙H交于M,N兩點(diǎn),若點(diǎn)M恰好是線段PN的中點(diǎn),求實(shí)數(shù)b的取值范圍.
(1)證明:由題意,A(3,0),B(3,2),C(-3,2),F(xiàn)(-1,0).
所以直線AC和直線BF的方程分別為:x+3y-3=0,x-2y+1=0,
x+3y-3=0
x-2y+1=0
解得
x=
3
5
y=
4
5

所以G點(diǎn)的坐標(biāo)為(
3
5
,
4
5
).
所以kEG=-2,kBF=
1
2
,
因?yàn)閗EG•kBF=-1,所以EG⊥BF,
(2)⊙H的圓心為BE中點(diǎn)H(2,1),半徑為BH=
2
,
所以⊙H方程為(x-2)2+(y-1)2=2.
(3)設(shè)M點(diǎn)的坐標(biāo)為(x0,y0),則N點(diǎn)的坐標(biāo)為(2x0,2y0-b),
因?yàn)辄c(diǎn)M,N均在⊙H上,所以
(x0-2)2+(y0-1)2=2①
(2x0-2)2+(2y0-b-1)2=2②

由②-①×4,得8x0+4(1-b)y0+b2+2b-9=0,
所以點(diǎn)M(x0,y0)在直線8x+4(1-b)y+b2+2b-9=0,
又因?yàn)辄c(diǎn)M(x0,y0)在⊙H上,
所以圓心H(2,1)到直線8x+4(1-b)y+b2+2b-9=0的距離
|16+4(1-b)+b2+2b-9|
64+16(1-b)2
2

即|(b-1)2+10|≤4
8+2(b-1)2
,
整理,得(b-1)4-12(b-1)2-28≤0,即[(b-1)2+2][(b-1)2-14]≤0,
所以1-
14
≤b≤1+
14
,故b的取值范圍為[1-
14
,1+
14
].
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn),,.當(dāng),,,時(shí),分別求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(diǎn)內(nèi)一點(diǎn),且,則的面積之比等于


 
A.9∶4∶1B.1∶4∶9C.3∶2∶1D.1∶2∶3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在△ABC中,已知
AB
AC
=9
,sinB=cosA•sinC,S△ABC=6,P為線段AB上的一點(diǎn),且
CP
=x
CA
|
CA
|
+y•
CB
CB
,則
1
x
+
1
y
的最小值為( 。
A.
7
6
B.
7
12
C.
7
12
+
3
3
D.
7
6
+
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在正三棱柱ABC-A1B1C1中,D是CC1的中點(diǎn),F(xiàn)是A1B的中點(diǎn),且
DF
=x
AB
+y
AC
,則x=______,y=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如下圖所示,在△ABO中,
OC
=
1
4
OA
,
OD
=
1
2
OB
,AD與BC相交于點(diǎn)M,設(shè)
OA
=
a
,
OB
=
b
,試用
a
,
b
表示
OM

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(diǎn),.設(shè)的平分線相交于,
那么有,其中等于(     )
A.2B.C.-3D.-

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知為橢圓的左、右焦點(diǎn),是橢圓上一點(diǎn)。
(1)求的最大值;
(2)若的面積為,求的值;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)a=(1,-2),b=(-3,4),c=(3,2),則(a+2bc=
A.(-15,12)B.0C.-3D.-11

查看答案和解析>>

同步練習(xí)冊(cè)答案