A. | 5$\sqrt{2}$-4 | B. | $\sqrt{17}$-1 | C. | 6-2$\sqrt{2}$ | D. | $\sqrt{17}$ |
分析 求出圓C1關(guān)于x軸的對稱圓的圓心坐標A,以及半徑,然后求解圓A與圓C2的圓心距減去兩個圓的半徑和,即可求出|PM|+|PN|的最小值.
解答 解:圓C1關(guān)于y=-1的對稱圓的圓心坐標A(1,-5),半徑為3,
圓C2的圓心坐標(0,2),半徑為1,
由圖象可知當P,C2,C3,三點共線時,|PM|+|PN|取得最小值,
|PM|+|PN|的最小值為圓C3與圓C2的圓心距減去兩個圓的半徑和,
即:|AC2|-3-1=$\sqrt{1+49}$-4=5$\sqrt{2}$-4.
故選:A.
點評 本題考查圓的對稱圓的方程的求法,兩個圓的位置關(guān)系,兩點距離公式的應(yīng)用,考查轉(zhuǎn)化思想與計算能力.
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,+∞) | B. | $(\frac{1}{2},+∞)$ | C. | $(\frac{1}{2},1)∪(1,+∞)$ | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 22-n | B. | 2n-2 | C. | 2n+2 | D. | 2-n-2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com