若(x+y)+(y-1)i=2+i(x,y∈R),則x-y=______.
由(x+y)+(y-1)i=2+i(x,y∈R),
x+y=2
y-1=1
,解得
x=0
y=2
,
所以x-y=0-2=-2.
故答案為-2.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在R上定義運(yùn)算△:x△y=x(1-y)若不等式(x-a)△(x+a)<1,對(duì)任意實(shí)數(shù)x恒成立,則實(shí)數(shù)a的取值范圍是
 
,函數(shù)y=1-4x-2x2在(1,+∞)上的值域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合M={y|y=2x,x∈R},P={y|y=
X-1
,x≥1}
,則M∩P=( 。
A、{y|y>1}
B、{y|y≥1}
C、{y|y>0}
D、{y|y≥0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

現(xiàn)有下列結(jié)論:
①若直線a,b不相交,則直線a,b為異面直線;
②函數(shù)f(x)=lgx-
1
x
的零點(diǎn)所在的區(qū)間是(1,10);
③從總體中抽取的樣本(x1,y2)(x2,y2),…,(xn,yn)若記
.
x
=
1
n
n
i=1
 xi
,
.
y
=
1
n
n
i=1
  yi
,則回歸直線
y
=bx+a
必過點(diǎn)(
.
x
.
y
);
④已知函數(shù)f(x)=2x+2-x,則y=f(x-2)的圖象關(guān)于直線x=2對(duì)稱.
其中正確的結(jié)論序號(hào)是
②③④
②③④
(注:把你認(rèn)為正確結(jié)論的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:0110 期中題 題型:填空題

下列說法中:
①若f(x)=ax2+(2a+b)x+2(其中x∈[2a-1,a+4])是偶函數(shù),則實(shí)數(shù)b=2;
②f(x)表示-2x+2與-2x2+4x+2中的較小者,則函數(shù)f(x)的最大值為1;
③如果在[-1,∞)上是減函數(shù),則實(shí)數(shù)a的取值范圍是(-8,-6];
④已知f(x)是定義在R上的不恒為零的函數(shù),且對(duì)任意的x,y∈R都滿足f(x·y)=x·f(y)+y·f(x),則f(x)是奇函數(shù);
其中正確說法的序號(hào)是(    )(注:把你認(rèn)為是正確的序號(hào)都填上)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:0103 期中題 題型:填空題

下列說法:
①若f(x)=ax2+(2a+b)x+2 (其中x∈[2a-1,a+4])是偶函數(shù),則實(shí)數(shù)b=2;
是奇函數(shù)又是偶函數(shù);
③已知f(x)是定義在R上的奇函數(shù),若當(dāng)x∈[0,+∞)時(shí),f(x)=x(1+x),則當(dāng)x∈R時(shí),f(x)=x(1+|x|);
④已知f(x)是定義在R上的不恒為零的函數(shù),且對(duì)任意的x,y∈R都滿足f(xy)=xf(y)+yf(x),則f(x)是奇函數(shù);
其中所有正確說法的序號(hào)是(    )。

查看答案和解析>>

同步練習(xí)冊(cè)答案