【題目】已知函數(shù)f(x)=ex(x﹣b)(b∈R).若存在x∈[ ,2],使得f(x)+xf′(x)>0,則實數(shù)b的取值范圍是(
A.(﹣∞,
B.(﹣∞,
C.(﹣
D.( ,+∞)

【答案】A
【解析】解:∵f(x)=ex(x﹣b),

∴f′(x)=ex(x﹣b+1),

若存在x∈[ ,2],使得f(x)+xf′(x)>0,

則若存在x∈[ ,2],使得ex(x﹣b)+xex(x﹣b+1)>0,

即存在x∈[ ,2],使得b< 成立,

令g(x)= ,x∈[ ,2],

則g′(x)= >0,

g(x)在[ ,2]遞增,

∴g(x)最大值=g(2)= ,

故b< ,

故選:A

【考點(diǎn)精析】掌握利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性是解答本題的根本,需要知道一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正三角形ABC的邊長為2,將它沿高AD翻折,使點(diǎn)B與點(diǎn)C間的距離為 ,此時四面體ABCD外接球表面積為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在自然數(shù)列1,2,3,,n中,任取k個元素位置保持不動,將其余n﹣k個元素變動位置,得到不同的新數(shù)列.由此產(chǎn)生的不同新數(shù)列的個數(shù)記為Pn(k).
(1)求P3(1)
(2)求 P4(k);
(3)證明 kPn(k)=n Pn1(k),并求出 kPn(k)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=|x|﹣ (a∈R)的圖象不可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: + =1(a>b>0)上點(diǎn)P,其左、右焦點(diǎn)分別為F1 , F2 , △PF1F2的面積的最大值為 ,且滿足 =3
(1)求橢圓E的方程;
(2)若A,B,C,D是橢圓上互不重合的四個點(diǎn),AC與BD相交于F1 , 且 =0,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】規(guī)定:點(diǎn)P(x,y)按向量 平移后的點(diǎn)為Q(x+a,y+b).若函數(shù) 的圖象按向量 =(j,k)且|j| 平移后的圖象對應(yīng)的函數(shù)是 +1.
(1)試求向量 的坐標(biāo);
(2)在△ABC中,角A,B,C所對的邊分別為a,b,c,已知f(2A)+2cos(B+C)=1, ①求角A的大;
②若a=6,求b+c的取值范圍.
另外:最后一小題也可用“余弦定理結(jié)合基本不等式”求解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的各項均為正數(shù),其前n項和為Sn , 且an2+an=2Sn , n∈N*
(1)求a1及an;
(2)求滿足Sn>210時n的最小值;
(3)令bn=4 ,證明:對一切正整數(shù)n,都有 + + ++

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓 + =1的左焦點(diǎn)為F,直線x=a與橢圓相交于點(diǎn)M、N,當(dāng)△FMN的周長最大時,△FMN的面積是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex﹣x2﹣ax.
(Ⅰ)若函數(shù)f(x)的圖象在x=0處的切線方程為y=2x+b,求a,b的值;
(Ⅱ)若函數(shù)f(x)在R上是增函數(shù),求實數(shù)a的最大值.

查看答案和解析>>

同步練習(xí)冊答案