設(shè)f(n)=+…+(n∈N*),那么f(n+1)-f(n)等于        .

 

【答案】

【解析】

試題分析:根據(jù)題中所給式子,求出f(n+1)和f(n),再兩者相減,即得到f(n+1)-f(n)的結(jié)果.由于f(n)=+…+,那么可知f(n+1)=+…++,那么可知f(n+1)-f(n)等于,故答案為

考點(diǎn):數(shù)列遞推式

點(diǎn)評:此題主要考查數(shù)列遞推式的求解,屬于對課本基礎(chǔ)知識點(diǎn)的考查

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:南通高考密卷·數(shù)學(xué)(理) 題型:013

設(shè)f(n)=(n∈N+),則f(n+1)-f(n)等于

[  ]

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(n)=2n+1(n∈N),P={1,2,3,4,5},Q={3,4,5,6,7},記={n∈N|f(n)∈P},={n∈N|f(n)∈Q},則(∩CN)∪(∩CN)=(    )

(A) {0,3}   (B){1,2}    (C) (3,4,5)  (D){1,2,6,7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江蘇省東臺市高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

設(shè)f(n)=1++ + (n∈N*).

求證:f(1)+f(2)+ +f(n-1)=n·[f(n)-1](n≥2,n∈N*).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(05年浙江卷理)設(shè)f(n)=2n+1(n∈N),P={1,2,3,4,5},Q={3,4,5,6,7},記={n∈N|f(n)∈P},={n∈N|f(n)∈Q},則()∪()=(    )

(A) {0,3}   (B){1,2}    (C) (3,4,5)  (D){1,2,6,7}

查看答案和解析>>

同步練習(xí)冊答案