(12分)設(shè)f(n)=1+,當(dāng)n≥2,nN*時(shí),用數(shù)學(xué)歸納法證明:n+f(1)+f(2)+…+f(n-1)=nf(n)。
見(jiàn)解析
(1)n=2時(shí),左=2+f(1)=3=2(1+)=2f(2)=右,成立。
(2)假設(shè)n=k時(shí),有k+f(1)+f(2)+…+f(k-1)=kf(k),
則當(dāng)n=k+1時(shí),左=k+1+f(1)+f(2)+…+f(k-1)+f(k),
右=(k+1)f(k+1)
左=1+f(k)+k+f(1)+f(2)+…+f(k-1)=1+f(k)+kf(k)=(k+1)[f(k)+]=(k+1)f(k+1)=右
∴n=k+1時(shí),等式成立
由(1)、(2)可知對(duì)n≥2,nN*等式都成立
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列,計(jì)算,根據(jù)計(jì)算結(jié)果,猜想的表達(dá)式,并用數(shù)學(xué)歸納法給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
一種計(jì)算裝置,有一數(shù)據(jù)入口點(diǎn)A和一個(gè)運(yùn)算出口點(diǎn)B ,按照某種運(yùn)算程序:
①當(dāng)從A口輸入自然數(shù)1時(shí),從B口得到 ,記為
當(dāng)從A口輸入自然數(shù)時(shí),在B口得到的結(jié)果是前一個(gè)結(jié)果倍;
試問(wèn):當(dāng)從A口分別輸入自然數(shù)2 ,3 ,4 時(shí),從B口分別得到什么數(shù)?試猜想的關(guān)系式,并證明你的結(jié)論。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

n為大于1的自然數(shù),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分10分)設(shè),是否存在整式,使得
對(duì)n≥2的一切自然數(shù)都成立?并試用數(shù)學(xué)
歸納法證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在數(shù)列{an}中,a1=1,當(dāng)n≥2時(shí),an,Sn,Sn成等比數(shù)列.
(1)求a2,a3,a4,并推出an的表達(dá)式;
(2)用數(shù)學(xué)歸納法證明所得的結(jié)論;
(3)求數(shù)列{an}所有項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

用數(shù)學(xué)歸納法證明:對(duì)任意的nN*,1-+-+…+-=++…+.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)x,y,z∈R,且滿足:x2y2z2=1,x+2y+3z,則xyz=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題


用數(shù)學(xué)歸納法證明“”驗(yàn)證n=1成立時(shí),左邊所得項(xiàng)是(  )                                       
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案