已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率e=
2
2
,且右焦點(diǎn)F到左準(zhǔn)線的距離為3.
(1)求橢圓C的方程;
(2)已知B為橢圓C在y軸的左測(cè)上一點(diǎn),線段BF與拋物線y2=2px(p>0)交于A,且滿(mǎn)足
AB
=2
FA
,求p的最大值.
分析:(1)由已知離心率及點(diǎn)F到準(zhǔn)線的距離,列方程即可得a、b、c的值;(2)設(shè)B(x0,y0),A(xA,yA),利用向量相等的意義得兩點(diǎn)坐標(biāo)間的關(guān)系,分別代入橢圓和拋物線方程即可得p關(guān)于
x0的函數(shù),利用換元法求值域即可
解答:解:(1)∵
x2
a2
+
y2
b2
=1
的離心率e=
2
2
,∴
c
a
=
2
2
.①
而右焦點(diǎn)到左準(zhǔn)線之距d=c+
a2
c
=3
.②
又a2=b2+c2     ③
由①②③解之得a=
2
,c=1
,b=1.
從而所求橢圓方程為
x2
2
+y2=1

(2)橢圓的右焦點(diǎn)為F(1,0),點(diǎn)B在橢圓
x2
2
+y2=1(x<0)
上,
設(shè)B(x0,y0),其中-
2
x0<0
,設(shè)A(xA,yA
AB
=2
FA
,得(x0-xA,y0-yA)=2(xA-1,yA
xA=
x0+2
3
,yA=
y0
3

由點(diǎn)A在拋物線y2=2px上,得
y
2
0
9
=2p•
x0+2
3

y
2
0
=1-
x
2
0
2
,
12p=
2-
x
2
0
x0+2

令t=x0+2,則2-
2
≤t<2

12p=
-t2+4t-2
t
=-(t+
2
t
-4)

2-
2
≤t<2
.∴t+
2
t
≥2
2
(當(dāng)且僅當(dāng)t=
2
時(shí)取“=”).
p≤
1
3
-
2
6

又當(dāng)t=
2
時(shí),x0=
2
-2
為橢圓在y軸左側(cè)上的點(diǎn).
故p的最大值為
1
3
-
2
6
點(diǎn)評(píng):本題考查了橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì),拋物線的標(biāo)準(zhǔn)方程,利用函數(shù)求最值的思想方法,向量在解析幾何中的應(yīng)用
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
1
2
,且經(jīng)過(guò)點(diǎn)P(1,
3
2
)

(1)求橢圓C的方程;
(2)設(shè)F是橢圓C的左焦,判斷以PF為直徑的圓與以橢圓長(zhǎng)軸為直徑的圓的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的短軸長(zhǎng)為2
3
,右焦點(diǎn)F與拋物線y2=4x的焦點(diǎn)重合,O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)設(shè)A、B是橢圓C上的不同兩點(diǎn),點(diǎn)D(-4,0),且滿(mǎn)足
DA
DB
,若λ∈[
3
8
,
1
2
],求直線AB的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)經(jīng)過(guò)點(diǎn)A(1,
3
2
),且離心率e=
3
2

(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)點(diǎn)B(-1,0)能否作出直線l,使l與橢圓C交于M、N兩點(diǎn),且以MN為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)O.若存在,求出直線l的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•房山區(qū)二模)已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的長(zhǎng)軸長(zhǎng)是4,離心率為
1
2

(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)過(guò)點(diǎn)P(0,-2)的直線l交橢圓于M,N兩點(diǎn),且M,N不與橢圓的頂點(diǎn)重合,若以MN為直徑的圓過(guò)橢圓C的右頂點(diǎn)A,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的短軸長(zhǎng)為2,離心率為
2
2
,設(shè)過(guò)右焦點(diǎn)的直線l與橢圓C交于不同的兩點(diǎn)A,B,過(guò)A,B作直線x=2的垂線AP,BQ,垂足分別為P,Q.記λ=
AP+BQ
PQ
,若直線l的斜率k≥
3
,則λ的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案