已知變量x,y滿足約束條件
y+x-1≤0
y-3x-1≤0
y-x+1≥0
,則z=2x+y的最大值為( 。
A、2B、1C、-4D、4
考點:簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合確定z的最大值.
解答: 解:作出不等式組對應(yīng)的平面區(qū)域如圖:(陰影部分ABC).由z=2x+y得y=-2x+z,
平移直線y=-2x+z,
由圖象可知當(dāng)直線y=-2x+z經(jīng)過點A時,直線y=-2x+z的截距最大,
此時z最大.
y+x-1=0
y-x+1=0
,解得
x=1
y=0
,即A(1,0)
將A的坐標(biāo)代入目標(biāo)函數(shù)z=2x+y,
得z=2×1+0=2.即z=2x+y的最大值為2.
故選:A.
點評:本題主要考查線性規(guī)劃的應(yīng)用,結(jié)合目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知三點A(1,-1),B(x,3),C(4,5)共線,則實數(shù)x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,b>0,
1
a
+
3
b
=1,則a+2b的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將容量為n的樣本中的數(shù)據(jù)分成6組,繪制頻率分布直方圖.若第一組至第六組數(shù)據(jù)的頻率之比為2、3、4、6、4、1,且前三組數(shù)據(jù)的頻數(shù)之和等于36,則n等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=1,an+an-1=2n(n≥2),則數(shù)列{an}的前n項和Sn=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩條直線l1:y=m和l2:y=
4
m+1
(m>0),l1與函數(shù)y=|log2x|的圖象從左至右相交于點A、B,l2與函數(shù)y=|log2x|的圖象從左至右相交于C、D,記線段AC和BD在x軸上的投影長度分別為a、b,當(dāng)m變化時,
b
a
的最小值為(  )
A、16
B、8
C、8
2
D、4
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,記∠BAC=x(角的單位是弧度制),△ABC的面積為S,且
AB
AC
=8,4≤S≤4
3
.求函數(shù)f(x)=2
3
sin2(x+
π
4
)+2cos2x-
3
的最大值、最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)是函數(shù)y=ax(a>0,且a≠1)的反函數(shù),且f(3)=1,則f(x)=(  )
A、log3x
B、
1
3x
C、log 
1
3
x
D、3x-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=
-2x+m
2x+1+n
(m>0,n>0).
(1)當(dāng)m=n=1時,證明:f(x)不是奇函數(shù);
(2)設(shè)f(x)是奇函數(shù),求m與n的值;
(3)在(2)的條件下,求不等式f(f(x))+f(
1
4
)<0的解集.

查看答案和解析>>

同步練習(xí)冊答案