已知實數(shù)x,y滿足log2(x+2y+3)=1+log2x+log2y,則xy的最小值是   
【答案】分析:先根據(jù)對數(shù)的運算性質(zhì)得到x與y的等量關系,然后利用基本不等式轉(zhuǎn)化關于的二次不等式,解之即可.
解答:解:∵實數(shù)x,y滿足log2(x+2y+3)=1+log2x+log2y
∴l(xiāng)og2(x+2y+3)=1+log2x+log2y=log2(2xy)
即x+2y+3=2xy≥2    (x>0,y>0)
=t>0
則2t2-2t-3≥0則t≥
∴xy≥
故答案為:
點評:本題主要考查對數(shù)的運算法則,以及基本不等式,解題時要認真審題,仔細解答,注意公式的靈活運用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在A、B、C、D四小題中只能選做2題,每小題10分,共計20分,請在答題紙指定區(qū)域內(nèi)作答,解答應寫出文字說明、證明過程或演算步驟.
A.選修4-1:(幾何證明選講)
如圖,從O外一點P作圓O的兩條切線,切點分別為A,B,
AB與OP交于點M,設CD為過點M且不過圓心O的一條弦,
求證:O,C,P,D四點共圓.
B.選修4-2:(矩陣與變換)
已知二階矩陣M有特征值λ=3及對應的一個特征向量e1=[
 
1
1
],并且矩陣M對應的變換將點(-1,2)變換成(9,15),求矩陣M.
C.選修4-4:(坐標系與參數(shù)方程)
在極坐標系中,曲線C的極坐標方程為p=2
2
sin(θ-
π
4
),以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為
x=1+
4
5
t
y=-1-
3
5
t
(t為參數(shù)),求直線l被曲線C所截得的弦長.
D.選修4-5(不等式選講)
已知實數(shù)x,y,z滿足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

本題有(I)、(II)、(III)三個選作題,每題7分,請考生任選兩題作答,滿分14分.如果多做,則按所做的前兩題記分,作答時,先用2B鉛筆在答題卡上把所選題目對應的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
已知a∈R,矩陣P=
02
-10
,Q=
01
a0
,若矩陣PQ對應的變換把直線l1:x-y+4=0變?yōu)橹本l2:x+y+4=0,求實數(shù)a的值.
(2)選修4-4:坐標系與參數(shù)方程
在極坐標系中,求圓C:ρ=2上的點P到直線l:ρ(cosθ+
3
sinθ)=6
的距離的最小值.
(3)選修4-5:不等式選講
已知實數(shù)x,y滿足x2+4y2=a(a>0),且x+y的最大值為5,求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省高三8月第一次月考文科數(shù)學試卷(解析版) 題型:選擇題

已知實數(shù)x,y滿足約束條件則z=2x-y的取值范圍(     )

A.[l,2]    B.[1,3]    C.[0,2]     D.[0,1]

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省南京市四區(qū)縣高三(上)聯(lián)考數(shù)學試卷(解析版) 題型:解答題

在A、B、C、D四小題中只能選做2題,每小題10分,共計20分,請在答題紙指定區(qū)域內(nèi)作答,解答應寫出文字說明、證明過程或演算步驟.
A.選修4-1:(幾何證明選講)
如圖,從O外一點P作圓O的兩條切線,切點分別為A,B,
AB與OP交于點M,設CD為過點M且不過圓心O的一條弦,
求證:O,C,P,D四點共圓.
B.選修4-2:(矩陣與變換)
已知二階矩陣M有特征值λ=3及對應的一個特征向量e1=[],并且矩陣M對應的變換將點(-1,2)變換成(9,15),求矩陣M.
C.選修4-4:(坐標系與參數(shù)方程)
在極坐標系中,曲線C的極坐標方程為p=2sin(),以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為(t為參數(shù)),求直線l被曲線C所截得的弦長.
D.選修4-5(不等式選講)
已知實數(shù)x,y,z滿足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年江蘇省南京市四區(qū)縣高三(上)聯(lián)考數(shù)學試卷(解析版) 題型:解答題

在A、B、C、D四小題中只能選做2題,每小題10分,共計20分,請在答題紙指定區(qū)域內(nèi)作答,解答應寫出文字說明、證明過程或演算步驟.
A.選修4-1:(幾何證明選講)
如圖,從O外一點P作圓O的兩條切線,切點分別為A,B,
AB與OP交于點M,設CD為過點M且不過圓心O的一條弦,
求證:O,C,P,D四點共圓.
B.選修4-2:(矩陣與變換)
已知二階矩陣M有特征值λ=3及對應的一個特征向量e1=[],并且矩陣M對應的變換將點(-1,2)變換成(9,15),求矩陣M.
C.選修4-4:(坐標系與參數(shù)方程)
在極坐標系中,曲線C的極坐標方程為p=2sin(),以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為(t為參數(shù)),求直線l被曲線C所截得的弦長.
D.選修4-5(不等式選講)
已知實數(shù)x,y,z滿足x+y+z=2,求2x2+3y2+z2的最小值.

查看答案和解析>>

同步練習冊答案