已知定義在R上的奇函數(shù)f(x)和偶函數(shù)g(x)滿足f(x)+g(x)=ax-a-x+2,若g(2)=a,則f(2)=( 。
分析:利用函數(shù)f(x)是奇函數(shù),g(x)是偶函數(shù),由條件f(x)+g(x)=ax-a-x+2,構(gòu)建方程組,然后求解即可.
解答:解:∵f(x)+g(x)=ax-a-x+2,g(2)=a,
∴f(2)+g(2)=a2-a-2+2.①,
∵f(x)是奇函數(shù),g(x)是偶函數(shù),
∴當(dāng)x=-2時,f(-2)+g(-2)=a-2-a2+2   ②
即-f(2)+g(2)=a-2-a2+2,③
①+③得:2g(2)=4,即g(2)=2,
又g(2)=a,∴a=2.
代入①得:f(2)+2=22-2-2+2,
∴f(2)=22-2-2=4-
1
4
=
15
4

故選:B.
點評:本題主要考查函數(shù)奇偶性的應(yīng)用,利用條件建立方程組是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的單調(diào)遞增奇函數(shù)以f(x),若當(dāng)0≤θ≤
π2
時,f(cosθ+msinθ)+f(-2m-2)<0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的奇函數(shù)f(x).當(dāng)x<0時,f(x)=x2+2x.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)問:是否存在實數(shù)a,b(a≠b),使f(x)在x∈[a,b]時,函數(shù)值的集合為[
1
b
1
a
]
?若存在,求出a,b;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:大連二十三中學(xué)2011學(xué)年度高二年級期末測試試卷數(shù)學(xué)(理) 題型:選擇題

已知定義在R上的奇函數(shù),滿足,且在區(qū)間[0,2]上是增函

數(shù),則(     ).     

A.            B.

C.            D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆浙江省高二下學(xué)期期末考試理科數(shù)學(xué)試卷 題型:選擇題

已知定義在R上的奇函數(shù),滿足,且在區(qū)間[0,1]上是增函

數(shù),若方程在區(qū)間上有四個不同的根,則

(     )

(A)     (B)      (C)      (D)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知定義在R上的單調(diào)遞增奇函數(shù)以f(x),若當(dāng)0≤θ≤數(shù)學(xué)公式時,f(cosθ+msinθ)+f(-2m-2)<0恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案