若f(x)=ax5+bx3+cx+6,f(-3)=-12,則f(3)=________.

24
分析:可令g(x)=ax5+bx3+cx,由g(-x)+g(x)=0,f(-3)=-12,可求得f(3).
解答:∵f(x)=g(x)+6,∴f(-x)+f(x)=g(-x)+g(x)+12=12,又f(-3)=-12,∴f(3)=24.
故答案為:24.
點評:本題考查函數(shù)奇偶性的性質(zhì),關(guān)鍵在于觀察到f(-x)+f(x)=12,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設f(x)=ax5+bx3+cx+7(其中a,b,c為常數(shù),x∈R),若f(-2013)=-17,則f(2013)=
31
31

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若f(x)=ax5+bx3+cx+6,f(-3)=-12,則f(3)=
24
24

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若f(x)=ax5+bx3+cx+6,f(-3)=-12,則f(3)=______.

查看答案和解析>>

科目:高中數(shù)學 來源:2004-2005學年重慶市南開中學高一(上)期中數(shù)學試卷(解析版) 題型:填空題

若f(x)=ax5+bx3+cx+6,f(-3)=-12,則f(3)=   

查看答案和解析>>

同步練習冊答案