已知f(x)=數(shù)學(xué)公式的反函數(shù)是f-1(x),函數(shù)y=g(x)的圖象與y=f-1(x+1)的圖象關(guān)于直線y=x對(duì)稱,且g(3)=數(shù)學(xué)公式則實(shí)數(shù)a的值是


  1. A.
    1
  2. B.
    2
  3. C.
    -1
  4. D.
    數(shù)學(xué)公式
B
分析:根據(jù)函數(shù)y=g(x)的圖象與y=f-1(x+1)的圖象關(guān)于直線y=x對(duì)稱可得函數(shù)y=g(x)與y=f-1(x+1)互為反函數(shù),根據(jù)反函數(shù)的性質(zhì)建立關(guān)系式,從而求出所求.
解答:∵函數(shù)y=g(x)的圖象與y=f-1(x+1)的圖象關(guān)于直線y=x對(duì)稱
∴函數(shù)y=g(x)與y=f-1(x+1)互為反函數(shù)
而g(3)=則y=f-1(x+1)過點(diǎn)(,3)
即f-1+1)=f-1)=3
則f(3)==
∴a=2
故選B.
點(diǎn)評(píng):本題主要考查了反函數(shù),以及反函數(shù)的性質(zhì),同時(shí)考查了轉(zhuǎn)化的思想,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列bn,bn=f-1(n)若對(duì)于任意n∈N*都有bn=an,則稱數(shù)列{bn}是數(shù)列{an}的“自反函數(shù)列”
(1)設(shè)函數(shù)f(x)=
px+1
x+1
,若由函數(shù)f(x)確定的數(shù)列{an}的自反數(shù)列為{bn},求an
(2)已知正整數(shù)列{cn}的前項(xiàng)和sn=
1
2
(cn+
n
cn
).寫出Sn表達(dá)式,并證明你的結(jié)論;
(3)在(1)和(2)的條件下,d1=2,當(dāng)n≥2時(shí),設(shè)dn=
-1
anSn2
,Dn是數(shù)列{dn}的前n項(xiàng)和,且Dn>loga(1-2a)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•寶山區(qū)二模)已知f(x)=
10x+a10x+1
是奇函數(shù).
(1)求a的值;
(2)求f(x)的反函 數(shù) f-1(x),判斷f-1(x)的奇偶性,并給予證明;
(3)若函數(shù)y=F(x)是以2為周期的奇函數(shù),當(dāng)x∈(-1,0)時(shí),F(xiàn)(x)=f-1(x),求x∈(2,3)時(shí)F(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知f(x)=數(shù)學(xué)公式是奇函數(shù).
(1)求a的值;
(2)求f(x)的反函 數(shù) f-1(x),判斷f-1(x)的奇偶性,并給予證明;
(3)若函數(shù)y=F(x)是以2為周期的奇函數(shù),當(dāng)x∈(-1,0)時(shí),F(xiàn)(x)=f-1(x),求x∈(2,3)時(shí)F(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市黃浦區(qū)大境中學(xué)高三5月模擬數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列bn,bn=f-1(n)若對(duì)于任意n∈N*都有bn=an,則稱數(shù)列{bn}是數(shù)列{an}的“自反函數(shù)列”
(1)設(shè)函數(shù)f(x)=,若由函數(shù)f(x)確定的數(shù)列{an}的自反數(shù)列為{bn},求an
(2)已知正整數(shù)列{cn}的前項(xiàng)和sn=(cn+).寫出Sn表達(dá)式,并證明你的結(jié)論;
(3)在(1)和(2)的條件下,d1=2,當(dāng)n≥2時(shí),設(shè)dn=,Dn是數(shù)列{dn}的前n項(xiàng)和,且Dn>loga(1-2a)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年上海市八區(qū)聯(lián)考高考數(shù)學(xué)模擬試卷(理科)(解析版) 題型:解答題

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列bn,bn=f-1(n)若對(duì)于任意n∈N*都有bn=an,則稱數(shù)列{bn}是數(shù)列{an}的“自反函數(shù)列”
(1)設(shè)函數(shù)f(x)=,若由函數(shù)f(x)確定的數(shù)列{an}的自反數(shù)列為{bn},求an;
(2)已知正整數(shù)列{cn}的前項(xiàng)和sn=(cn+).寫出Sn表達(dá)式,并證明你的結(jié)論;
(3)在(1)和(2)的條件下,d1=2,當(dāng)n≥2時(shí),設(shè)dn=,Dn是數(shù)列{dn}的前n項(xiàng)和,且Dn>loga(1-2a)恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案