設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知Sn=2an-2n+1(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令 .用數(shù)學(xué)歸納法證明:(1-b1)(1-b2)…(1-bn)≥1-(b1+b2+…+bn);
(3)設(shè),數(shù)列{cn}的前n項(xiàng)和為Cn,若存在整數(shù)m,使對(duì)任意n∈N*且n≥2,都有成立,求m的最大值.
【答案】分析:(1)根據(jù)題中給出的設(shè)數(shù)列{an}的前n項(xiàng)和為Sn便可求出數(shù)列{ }是公差為1的等差數(shù)列,將a1=4代入便可求出數(shù)列{an}的通項(xiàng)公式;
(2)由,知原不等式即證.由數(shù)學(xué)歸納法進(jìn)行證明.
(3)先求出數(shù)列bn的通項(xiàng)公式,然后求寫前n項(xiàng)和Bn的表達(dá)式,進(jìn)而求出的B3n-Bn表達(dá)式,然后證明B3n-Bn為遞增數(shù)列,即當(dāng)n=2時(shí),B3n-Bn最小,便可求出m的最大值.
解答:解:(1)由Sn=2an-2n+1,得Sn-1=2an-1-2n(n≥2).
兩式相減,得an=2an-2an-1-2n,即an-2an-1=2n(n≥2).
于是 -=1,所以數(shù)列{ }是公差為1的等差數(shù)列.
又S1=a1=2a1-22,所以a1=4.
所以=2+(n-1)=n+1,故an=(n+1)•2n
(2)由(1)知:,
原不等式即證
①n=1時(shí),左==右,故n=1成立;
②假設(shè)n=k時(shí),,
則n=k+1時(shí),
=

故n=k+1時(shí),也成立.綜合①②知,原不等式恒成立.
(3)因?yàn)閎n==log2n2=,則B3n-Bn=+++…+
令f(n)=++…+,
則f(n+1)=++…++++
所以f(n+1)-f(n)=++-=+-+-=0.
即f(n+1)>f(n),所以數(shù)列{f(n)}為遞增數(shù)列.(7分)
所以當(dāng)n≥2時(shí),f(n)的最小值為f(2)=+++=
據(jù)題意,,即m<19.又m為整數(shù),
故m的最大值為18.(8分)
點(diǎn)評(píng):本題考查數(shù)列的綜合應(yīng)用,具體涉及到通項(xiàng)公式的求法、數(shù)學(xué)歸納法的證明和最大值的求法.解題時(shí)要認(rèn)真審題,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)的和為Sn,且Sn=3n+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=an(2n-1),求數(shù)列{bn}的前n項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列an的前n項(xiàng)的和為Sn,a1=
3
2
Sn=2an+1-3

(1)求a2,a3;
(2)求數(shù)列an的通項(xiàng)公式;
(3)設(shè)bn=(2log
3
2
an+1)•an
,求數(shù)列bn的前n項(xiàng)的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的關(guān)系式;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)證明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式組
x≥0
y≥0
nx+y≤4n
所表示的平面區(qū)域?yàn)镈n,若Dn內(nèi)的整點(diǎn)(整點(diǎn)即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn))個(gè)數(shù)為an(n∈N*
(1)寫出an+1與an的關(guān)系(只需給出結(jié)果,不需要過程),
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)數(shù)列an的前n項(xiàng)和為SnTn=
Sn
5•2n
,若對(duì)一切的正整數(shù)n,總有Tn≤m成立,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鄭州一模)設(shè)數(shù)列{an}的前n項(xiàng)和Sn=2n-1,則
S4
a3
的值為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案