6.在三棱錐P-ABC中,PA⊥底面ABC,BC⊥AC,∠ABC=30°,AC=1,PB=2$\sqrt{3}$,則PC與平面PAB所成余弦值是(  )
A.$\frac{\sqrt{33}}{6}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{3}}{6}$D.$\frac{\sqrt{6}}{3}$

分析 由等面積求出C到平面PAB的距離,再求出PC,即可求出PC與平面PAB所成余弦值.

解答 解:由題意,∠ABC=30°,AC=1,BC⊥AC,
所以AB=2,BC=$\sqrt{3}$.
∵PA⊥底面ABC,PB=2$\sqrt{3}$,
∴PA=$\sqrt{12-4}$=2$\sqrt{2}$,∴PC=3.
設(shè)C到平面PAB的距離為d,則由等面積可得$\frac{1}{2}•1•\sqrt{3}=\frac{1}{2}•2d$,
∴d=$\frac{\sqrt{3}}{2}$
∴PC與平面PAB所成角的正弦值=$\frac{\frac{\sqrt{3}}{2}}{3}$=$\frac{\sqrt{3}}{6}$,
∴PC與平面PAB所成角的余弦值=$\sqrt{1-\frac{3}{36}}$=$\frac{\sqrt{33}}{6}$.
故選A.

點(diǎn)評(píng) 本題考查線面位置關(guān)系,考查空間角,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.若正數(shù)a,b滿足ab-(a+b)=1,則a+b的最小值是(  )
A.2+2$\sqrt{2}$B.2$\sqrt{2}$-2C.$\sqrt{5}$+2D.$\sqrt{5}$-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=lnx,$g(x)=-\frac{a}{x}+\frac{3}{2}(a>0)$
(1)當(dāng)a=1時(shí),若曲線y=f(x)在點(diǎn)M(x0,f(x0))處的切線與曲線y=g(x)在點(diǎn)P(x0,g(x0))處的切線平行,求實(shí)數(shù)x0的值;
(2)若?x∈(0,e],都有f(x)≥g(x),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.關(guān)于x的方程2sinx-cos2x=m的解集是空集,則實(shí)數(shù)m的取值范圍是(-∞,-2)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若直線l:y=k(x+1)與圓C:(x-1)2+y2=1恒有公共點(diǎn),則k的取值范圍是$-\frac{{\sqrt{3}}}{3}≤k≤\frac{{\sqrt{3}}}{3}$,,直線l的傾斜角的取值范圍是$θ∈[{0,\frac{π}{6}}]∪[{\frac{5π}{6},π})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.對(duì)于函數(shù)f(x),若存在實(shí)數(shù)M>0,使得對(duì)于定義域內(nèi)的任意的x,使得函數(shù)|f(x)|≤M,則稱函數(shù)f(x)為有界函數(shù),下列函數(shù)是有界函數(shù)的是④⑤⑥
①y=2x+1
②y=-x2+2x
③y=2x-1
④y=lnx(x∈(1,e])
⑤y=2-|x|
⑥$y=\frac{x}{|x|+2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.在拋物線x2=2py(p>0)上,縱坐標(biāo)為2的點(diǎn)到拋物線焦點(diǎn)的距離為5,則p=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在平面直角坐標(biāo)系xOy中,設(shè)圓C的方程為(x-a)2+(y-2a+4)2=1.
(Ⅰ)若圓C經(jīng)過(guò)A(3,3)與B(4,2)兩點(diǎn),求實(shí)數(shù)a的值;
(Ⅱ)點(diǎn)P(0,3),若圓C上存在點(diǎn)M,使|MP|=2|MO|,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)$f(x)=\frac{1}{2}{x^2}-2alnx+(a-2)x,a∈R$
(Ⅰ)當(dāng)a<0時(shí),討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)證明:當(dāng)$a≤-\frac{1}{2}$時(shí),對(duì)任意的x1,x2∈(0,+∞),且x2>x1,都有f(x2)-ax2>f(x1)-ax1成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案