如圖,在四棱錐中,底面為直角梯形,且,,側(cè)面底面. 若.
(1)求證:平面;
(2)側(cè)棱上是否存在點(diǎn),使得平面?若存在,指出點(diǎn) 的位置并證明,若不存在,請說明理由;
(3)求二面角的余弦值.
(1)見解析(2)見解析(3)
解析試題分析:(1)由側(cè)面底面,PA⊥AD及面面垂直性質(zhì)定理得,PA⊥面ABCD,由線面垂直定義可得PA⊥CD,通過計算可證CD⊥AC,根據(jù)線面垂直判定定理可得CD⊥面PAC;(2)若E是PA中點(diǎn),F(xiàn)是CD中點(diǎn),連結(jié)BE,EF,CF,由三角形中位線定理及平行公理可證四邊形BEFC為平行四邊形,則BE∥CF,根據(jù)線面平行的判定定理可得;(3)以A為原點(diǎn),AB,AC,AP分別為軸建立空間直角坐標(biāo)系,顯然是平面PAD的法向量,求出PCD的法向量,求出這兩個法向量的夾角的余弦值,即可求出二面角A-PD—C的余弦值.
試題解析:(1)因為 ,所以.
又因為側(cè)面底面,且側(cè)面底面,
所以底面.
而底面,
所以.
在底面中,因為,,
所以 , 所以.
又因為, 所以平面. 4分
(2)在上存在中點(diǎn),使得平面,
證明如下:設(shè)的中點(diǎn)是,
連結(jié),,,
則,且.
由已知,
所以. 又,
所以,且,
所以四邊形為平行四邊形,所以.
因為平面,平面,
所以平面. 8分
(3)由(1)知,PA⊥面ABCD,以A為原點(diǎn),AB,AC,AP分別為軸建立空間直角坐標(biāo)系,設(shè)AB=1,則P(0,0,1),B(1,0,0)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中點(diǎn)。
求證:(1)PA∥平面BDE (4分)
(2)平面PAC平面BDE(6分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,斜三棱柱的底面是直角三角形,,點(diǎn)在底面內(nèi)的射影恰好是的中點(diǎn),且
(1)求證:平面平面;
(2)若,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知在側(cè)棱垂直于底面三棱柱中,,,,,點(diǎn)是的中點(diǎn).
(1)求證:;
(2)求證:
(3)求三棱錐的體積.
|
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐的底面是平行四邊形,,,分別是棱的中點(diǎn).
(1)證明平面;
(2)若二面角P-AD-B為,
①證明:平面PBC⊥平面ABCD
②求直線EF與平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
設(shè)是三個不重合的平面,l 是直線,給出下列四個命題:
①若;
②若;
③若l上有兩點(diǎn)到的距離相等,則l//;
④若.
其中正確命題的序號是____________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com