如圖,在棱長都相等的正三棱柱ABC-A1B1C1中,D,E分別為AA1,B1C的中點.
(1)求證:DE∥平面ABC;
(2)求證:B1C⊥平面BDE.

證明:(1),
∵G,E分別為CB,CB1的中點,
∴EG∥BB1,且,
又∵正三棱柱ABC-A1B1C1
∴EG∥AD,EG=AD
∴四邊形ADEG為平行四邊形.
∴AG∥DE
∵AG?平面ABC,DE?平面ABC,
所以 DE∥平面ABC.
(2)由可得,取BC中點G
∵正三棱柱ABC-A1B1C1,
∴BB1⊥平面ABC.
∵AG?平面ABC,
∴AG⊥BB1,
∵G為BC的中點,AB=AC,
∴AG⊥BC∴AG⊥平面BB1C1C,
∵B1C?平面BB1C1C,
∴AG⊥B1C,
∵AG∥DE
∴DE⊥B1C,
∵BC=BB1,B1E=EC
∴B1C⊥BE,
∵BE?平面BDE,DE?平面BDEBE∩DE=E,
∴B1C⊥平面BDE.
分析:(1)取BC中點G,連接AG,EG,欲證直線DE∥平面ABC,只需證明DE平行平面ABC中的一條直線即可,由四邊形ADEG為平行四邊形,可知AG∥DE,AG?平面ABC,DE?平面ABC,問題得證.
(2)取BC的中點G,判斷三棱柱ABC-A1B1C1為直三棱柱,BB1⊥平面ABC,再證明B1C⊥BE,可證得:B1C⊥平面BDE.
點評:本題主要考查了證明線面平行的方法、空間的線面平行,線線垂直的證明,充分考查了學生的邏輯推理能力,空間想象力,以及識圖能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,在棱長都相等的正三棱柱ABC-A1B1C1中,D,E分別為AA1,B1C的中點.
(1)求證:DE∥平面ABC;
(2)求證:B1C⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年江西省高二第三次段考數(shù)學文卷 題型:解答題

如圖,在棱長都相等的正三棱柱中,分別為的中點.

⑴求證:;

⑵求證:.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年江蘇省南京市金陵中學高三(上)8月月考數(shù)學試卷(解析版) 題型:解答題

如圖,在棱長都相等的正三棱柱ABC-A1B1C1中,D,E分別為AA1,B1C的中點.
(1)求證:DE∥平面ABC;
(2)求證:B1C⊥平面BDE.

查看答案和解析>>

科目:高中數(shù)學 來源:2013年甘肅省定西市文峰中學高三新課標數(shù)學模擬試卷(二)(解析版) 題型:解答題

如圖,在棱長都相等的正三棱柱ABC-A1B1C1中,D,E分別為AA1,B1C的中點.
(1)求證:DE∥平面ABC;
(2)求證:B1C⊥平面BDE.

查看答案和解析>>

同步練習冊答案