雙曲線
x2
5
-
y2
9
=1
的虛軸長等于
6
6
分析:由雙曲線的標(biāo)準(zhǔn)方程
x2
5
-
y2
9
=1
可得,a=
5
,b=3,從而得到虛軸的長2b.
解答:解:由雙曲線的標(biāo)準(zhǔn)方程
x2
5
-
y2
9
=1
可得,a=
5
,b=3,故虛軸的長為:2 b=6,
故答案為:6.
點評:本題主要考查雙曲線的標(biāo)準(zhǔn)方程,以及雙曲線的簡單性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列五個命題,其中真命題的序號是
 
(寫出所有真命題的序號).
(1)已知C:
x2
2-m
+
y2
m2-4
=1
(m∈R),當(dāng)m<-2時C表示橢圓.
(2)在橢圓
x2
45
+
y2
20
=1上有一點P,F(xiàn)1、F2是橢圓的左,右焦點,△F1PF2為直角三角形則這樣的點P有8個.
(3)曲線
x2
10-m
+
y2
6-m
=1(m<6)
與曲線
x2
5-m
+
y2
9-m
=1(5<m<9)
的焦距相同.
(4)漸近線方程為y=±
b
a
x(a>0,b>0)
的雙曲線的標(biāo)準(zhǔn)方程一定是
x2
a2
-
y2
b2
=1

(5)拋物線y=ax2的焦點坐標(biāo)為(0,
1
4a
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

中心在原點,有一條漸近線方程是2x+3y=0,對稱軸為坐標(biāo)軸,且過點(2,2)的雙曲線方程是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有下列五個命題:
①“若x+y=0,則x,y互為相反數(shù)”的逆命題.
②在平面內(nèi),F(xiàn)1、F2是定點,丨F1F2丨=6,動點M滿足丨MF1丨-丨MF2丨=4,則點M的軌跡是雙曲線.
③“在△ABC中,“∠B=60°”是“∠A,∠B,∠C三個角成等差數(shù)列”的充要條件.
④“若-3<m<5,則方程
x2
5-m
+
y2
m+3
=1是橢圓”.
⑤已知向量
a
b
,
c
是空間的一個基底,則向量
a
+
b
,
a
-
b
,
c
也是空間的一個基底.
⑥橢圓
x2
25
+
y2
9
=1上一點P到一個焦點的距離為5,則P到另一個焦點的距離為5.
其中真命題的序號是
①③⑤⑥
①③⑤⑥

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

雙曲線
x2
5
-
y2
9
=1
的虛軸長等于______.

查看答案和解析>>

同步練習(xí)冊答案