分析 (1)當a=-1 時,求出A,即可求A∩B.
(2)若A⊆B,確定A≠∅,再求實數a的取值范圍.
解答 解:(1)當a=-1時,A=($\frac{1}{2}$,2],∴A∩B=($\frac{1}{2}$,2)…(5)
(2)∵A=(-$\frac{a}{2}$,$\frac{3-a}{2}$],A⊆B,
∴A=∅,-$\frac{a}{2}$≥$\frac{3-a}{2}$,不成立….…(7)
$\left\{\begin{array}{l}{-\frac{a}{2}≥-\frac{1}{2}}\\{\frac{3-a}{2}<2}\end{array}\right.$解,得:-1<a≤1.…(12)
點評 本題考查集合的運算與關系,考查學生的計算能力,比較基礎.
科目:高中數學 來源: 題型:選擇題
A. | 101 | B. | 122 | C. | 145 | D. | 170 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{1}{7}$ | B. | $\frac{1}{5}$ | C. | 5 | D. | 7 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $-\frac{{\sqrt{2}}}{5}$ | B. | $\frac{{\sqrt{2}}}{5}$ | C. | $-\frac{{\sqrt{2}}}{10}$ | D. | $\frac{{\sqrt{2}}}{10}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com