11.設(shè)f(x)為可導(dǎo)函數(shù),且滿足$\underset{lim}{△x→∞}$$\frac{f(1+2△x)-f(1)}{△x}$=-2,則函數(shù)y=f(x)在x=1處的導(dǎo)數(shù)為( 。
A.1B.-1C.1或-1D.以上答案都不對

分析 利用導(dǎo)數(shù)的定義,即可得出結(jié)論.

解答 解:函數(shù)y=f(x)在x=1處的導(dǎo)數(shù)為$\frac{1}{2}$$\underset{lim}{△x→∞}$$\frac{f(1+2△x)-f(1)}{△x}$=-1,
故選:B.

點評 本題考查導(dǎo)數(shù)的運用,考查導(dǎo)數(shù)的意義,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖是某高三學(xué)生七次模擬考試的物理成績的莖葉圖,則該學(xué)生物理成績的平均數(shù)和中位數(shù)分別為( 。
A.87和85B.86和85C.87和84D.86和84

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.$cos({2014π-\frac{π}{3}})$=( 。
A.$\frac{{\sqrt{3}}}{2}$B.$-\frac{{\sqrt{3}}}{2}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(1)已知$sinα-cosα=\frac{1}{5}$(α是第三象限角),求sinα•cosα及sinα+cosα的值
(2)已知$cos({{{40}^o}+x})=\frac{1}{4}$,且-180°<x<-90°,求cos(140°-x)+cos2(50°-x)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若函數(shù)f(x)=x6,則f′(-1)=( 。
A.6B.-6C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.直線x=2的傾斜角為( 。
A.1B.不存在C.$\frac{π}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}是一個等差數(shù)列,且a2=1,a5=-5.
(1)求{an}的通項公式;
(2)設(shè)${c_n}=\frac{{5-{a_n}}}{2},{b_n}={2^{c_n}}$,記數(shù)列{log2bn}的前n項和為Tn,求滿足Tn≥2016的n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x)=x2ex的極大值為4e-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在復(fù)平面內(nèi),復(fù)數(shù)i(2-i)對應(yīng)的點位于第一象限.

查看答案和解析>>

同步練習(xí)冊答案