給出問(wèn)題:設(shè)F1、F2是雙曲線(xiàn)的焦點(diǎn),點(diǎn)P是雙曲線(xiàn)上的動(dòng)點(diǎn),點(diǎn)P到焦點(diǎn)F1的距離等于9,求點(diǎn)P到F2的距離,某同學(xué)的解答如下:雙曲線(xiàn)的實(shí)軸長(zhǎng)為8,由|PF1-PF2|=8即|9-PF2|=8,得PF2=1或PF2= 17.試問(wèn)該同學(xué)的解答是否正確?若正確,請(qǐng)說(shuō)明依據(jù);若不正確,請(qǐng)說(shuō)明理由.

解:該同學(xué)的解答不正確.
理由如下:由定義|PF1-PF2|=8 ,雙曲線(xiàn)中,
c=6,F(xiàn)1F2=12,
∴PF1+PF2≥12,
當(dāng)P,F(xiàn)1,F(xiàn)2在同一直線(xiàn)上時(shí)取得“=”,
由|PF1-PF2|=8得PF1-PF2=±8,
P在雙曲線(xiàn)的左右支上時(shí),PF1≥2或PF1≥10,
同理,PF2≥2或PF2≥10,
因此,PF2根本不可能為1,而只能為17.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

我們知道,判斷直線(xiàn)與圓的位置關(guān)系可以用圓心到直線(xiàn)的距離進(jìn)行判別,那么直線(xiàn)與橢圓的位置關(guān)系有類(lèi)似的判別方法嗎?請(qǐng)同學(xué)們進(jìn)行研究并完成下面問(wèn)題.
(1)設(shè)F1、F2是橢圓M:
x2
25
+
y2
9
=1
的兩個(gè)焦點(diǎn),點(diǎn)F1、F2到直線(xiàn)L:
2
x-y+
5
=0的距離分別為d1、d2,試求d1•d2的值,并判斷直線(xiàn)L與橢圓M的位置關(guān)系.
(2)設(shè)F1、F2是橢圓M:
x2
a2
+
y2
b2
=1
(a>b>0)的兩個(gè)焦點(diǎn),點(diǎn)F1、F2到直線(xiàn)L:mx+ny+p=0(m、n不同時(shí)為0)的距離分別為d1、d2,且直線(xiàn)L與橢圓M相切,試求d1•d2的值.
(3)試寫(xiě)出一個(gè)能判斷直線(xiàn)與橢圓的位置關(guān)系的充要條件,并證明.
(4)將(3)中得出的結(jié)論類(lèi)比到其它曲線(xiàn),請(qǐng)同學(xué)們給出自己研究的有關(guān)結(jié)論(不必證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題20分,第1小題滿(mǎn)分4分,第2小題滿(mǎn)分6分,第3小題6分,第4小題4分)

         我們知道,判斷直線(xiàn)與圓的位置關(guān)系可以用圓心到直線(xiàn)的距離進(jìn)行判別,那么直線(xiàn)與橢圓的位置關(guān)系有類(lèi)似的判別方法嗎?請(qǐng)同學(xué)們進(jìn)行研究并完成下面問(wèn)題。

   (1)設(shè)F1、F2是橢圓的兩個(gè)焦點(diǎn),點(diǎn)F1、F2到直線(xiàn)的距離分別為d1、d2,試求d1·d2的值,并判斷直線(xiàn)L與橢圓M的位置關(guān)系。

   (2)設(shè)F1、F2是橢圓的兩個(gè)焦點(diǎn),點(diǎn)F1、F2到直線(xiàn)        mn不同時(shí)為0)的距離分別為d1、d2,且直線(xiàn)L與橢圓M相切,試求d1·d2的值。

   (3)試寫(xiě)出一個(gè)能判斷直線(xiàn)與橢圓的位置關(guān)系的充要條件,并證明。

   (4)將(3)中得出的結(jié)論類(lèi)比到其它曲線(xiàn),請(qǐng)同學(xué)們給出自己研究的有關(guān)結(jié)論(不必證明)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

我們知道,判斷直線(xiàn)與圓的位置關(guān)系可以用圓心到直線(xiàn)的距離進(jìn)行判別,那么直線(xiàn)與橢圓的位置關(guān)系有類(lèi)似的判別方法嗎?請(qǐng)同學(xué)們進(jìn)行研究并完成下面問(wèn)題.
(1)設(shè)F1、F2是橢圓M:
x2
25
+
y2
9
=1
的兩個(gè)焦點(diǎn),點(diǎn)F1、F2到直線(xiàn)L:
2
x-y+
5
=0的距離分別為d1、d2,試求d1•d2的值,并判斷直線(xiàn)L與橢圓M的位置關(guān)系.
(2)設(shè)F1、F2是橢圓M:
x2
a2
+
y2
b2
=1
(a>b>0)的兩個(gè)焦點(diǎn),點(diǎn)F1、F2到直線(xiàn)L:mx+ny+p=0(m、n不同時(shí)為0)的距離分別為d1、d2,且直線(xiàn)L與橢圓M相切,試求d1•d2的值.
(3)試寫(xiě)出一個(gè)能判斷直線(xiàn)與橢圓的位置關(guān)系的充要條件,并證明.
(4)將(3)中得出的結(jié)論類(lèi)比到其它曲線(xiàn),請(qǐng)同學(xué)們給出自己研究的有關(guān)結(jié)論(不必證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年上海市十四校高三(上)第二次聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

我們知道,判斷直線(xiàn)與圓的位置關(guān)系可以用圓心到直線(xiàn)的距離進(jìn)行判別,那么直線(xiàn)與橢圓的位置關(guān)系有類(lèi)似的判別方法嗎?請(qǐng)同學(xué)們進(jìn)行研究并完成下面問(wèn)題.
(1)設(shè)F1、F2是橢圓M:的兩個(gè)焦點(diǎn),點(diǎn)F1、F2到直線(xiàn)L:x-y+=0的距離分別為d1、d2,試求d1•d2的值,并判斷直線(xiàn)L與橢圓M的位置關(guān)系.
(2)設(shè)F1、F2是橢圓M:(a>b>0)的兩個(gè)焦點(diǎn),點(diǎn)F1、F2到直線(xiàn)L:mx+ny+p=0(m、n不同時(shí)為0)的距離分別為d1、d2,且直線(xiàn)L與橢圓M相切,試求d1•d2的值.
(3)試寫(xiě)出一個(gè)能判斷直線(xiàn)與橢圓的位置關(guān)系的充要條件,并證明.
(4)將(3)中得出的結(jié)論類(lèi)比到其它曲線(xiàn),請(qǐng)同學(xué)們給出自己研究的有關(guān)結(jié)論(不必證明).

查看答案和解析>>

同步練習(xí)冊(cè)答案