過拋物線x
2=2py(p>0)的焦點作斜率為1的直線與該拋物線交于A,B兩點,A,B在x軸上的正射影分別為D,C.若梯形ABCD的面積為12
,則P="__________" .
試題分析:依題意知,焦點
,則過拋物線x
2=2py(p>0)的焦點且斜率為1的直線方程為
.設
、
.則易知
、
,所以
.又易知
,
.所以
、
.所以梯形ABCD的面積
.
聯(lián)立
,所以
,
.代入
中,可得
,又
,所以
.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓的中心在原點,焦點在
軸上,離心率為
,長軸長為
,直線
交橢圓于不同的兩點
.
(1)求橢圓的方程;
(2)求
的取值范圍;
(3)若直線
不經(jīng)過橢圓上的點
,求證:直線
的斜率互為相反數(shù).
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
:
的左、右焦點和短軸的兩個端點構成邊長為2的正方形.
(Ⅰ)求橢圓
的方程;
(Ⅱ)過點
的直線
與橢圓
相交于
,
兩點.點
,記直線
的斜率分別為
,當
最大時,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設橢圓
:
的左、右焦點分別是
、
,下頂點為
,線段
的中點為
(
為坐標原點),如圖.若拋物線
:
與
軸的交點為
,且經(jīng)過
、
兩點.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設
,
為拋物線
上的一動點,過點
作拋物線
的切線交橢圓
于
、
兩點,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
在平面直角坐標系
中,已知橢圓
:
的離心率
,且橢圓C上一點
到點Q
的距離最大值為4,過點
的直線交橢圓
于點
(Ⅰ)求橢圓C的方程;
(Ⅱ)設P為橢圓上一點,且滿足
(O為坐標原點),當
時,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
知橢圓
的離心率為
,定點
,橢圓短軸的端點是
,且
.
(1)求橢圓
的方程;
(2)設過點
且斜率不為0的直線交橢圓
于
兩點.試問
軸上是否存在異于
的定點
,使
平分
?若存在,求出點
的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
知橢圓
的左右焦點為F
1,F(xiàn)
2,離心率為
,以線段F
1 F
2為直徑的圓的面積為
, (1)求橢圓的方程;(2) 設直線l過橢圓的右焦點F
2(l不垂直坐標軸),且與橢圓交于A、B兩點,線段AB的垂直平分線交x軸于點M(m,0),試求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設集合A={(x,y)|
},B={(x,y)|y=3
x},則A∩B的子集的個數(shù)是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設
,則方程
不能表示的曲線為( )
查看答案和解析>>