16.如圖,△ABC內(nèi)接于圓O,過(guò)B點(diǎn)的切線為BE,∠CBE的角平分線交圓O于點(diǎn)D,連接AD交BC于F,延長(zhǎng)交BE于E.
(Ⅰ)證明:AD平分∠BAC;
(Ⅱ)證明:BD2-DF2=BF•CF.

分析 (Ⅰ)證明AD是∠BAC的平分線,只需證明∠CAD=∠BAD,利用BE是圓O的切線,BD是∠CBE的平分線即可證明;
(Ⅱ)先證明△BDA∽△FDB,可得$\frac{AD}{BD}=\frac{BD}{FD}$,即BD2=AD•FD,再結(jié)合相交弦定理,即可證明結(jié)論.

解答 證明:(Ⅰ)∵BE是圓O的切線,
∴∠EBD=∠BAD=∠BCD,
∵BD是∠CBE的平分線,
∴∠CBD=∠BAD,
∴∠CAD=∠CBD=∠BAD,
∴AD是∠BAC的平分線,即AD平分∠BAC;
(Ⅱ)∵∠CAD=∠BAD,∠CAD=∠FBD,
∴∠BAD=∠FBD,
∵∠BDA=∠FDB,
∴△BDA∽△FDB,
∴$\frac{AD}{BD}=\frac{BD}{FD}$,
∴BD2=AD•FD,
∴BD2-DF2=AD•FD-DF2=AF•FD
∵AF•FD=BF•CF,
∴BD2-DF2=BF•CF.

點(diǎn)評(píng) 本題考查與圓有關(guān)的比例線段,考查三角形相似的判斷與運(yùn)用,難度中等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.設(shè)正整數(shù)n≥2,對(duì)2×n格點(diǎn)鏈中的2n個(gè)結(jié)點(diǎn)用紅(R)、黃(Y)、藍(lán)(B)三種顏色染色,左右端點(diǎn)中的三個(gè)結(jié)點(diǎn)己經(jīng)染好色,如圖所示.若對(duì)剩余的2n-3個(gè)結(jié)點(diǎn),要求每個(gè)結(jié)點(diǎn)恰染-種顏色,相鄰結(jié)點(diǎn)異色,求不同的染色方法數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.下列命題:
①若$α+β=\frac{7π}{4}$,則(1-tanα)•(1-tanβ)=2;
②已知$\overrightarrow{a}$=(1,-2),$\overrightarrow$=(2,λ),且$\overrightarrow{a}$與$\overrightarrow$的夾角為銳角,則實(shí)數(shù)λ的取值范圍是λ<1;
③已知O是平面上一定點(diǎn),A,B,C是平面上不共線的三個(gè)點(diǎn),動(dòng)點(diǎn)P滿足$\overrightarrow{OP}=\overrightarrow{OA}+λ(\overrightarrow{AB}+\overrightarrow{AC})$,λ∈(0,+∞),則P的軌跡一定通過(guò)△ABC的重心;
④在△ABC中,∠A=60°,邊長(zhǎng)a,c分別為$a=4,c=3\sqrt{3}$,則△ABC只有一解;
⑤如果△ABC內(nèi)接于半徑為R的圓,且$2R({sin^2}A-{sin^2}C)=(\sqrt{2}a-b)sinB$,則△ABC的面積的最大值$\frac{{\sqrt{2}+1}}{2}{R^2}$;
其中真命題的序號(hào)為①③⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.為迎接2016年“猴”年的到來(lái),某電視臺(tái)舉辦猜獎(jiǎng)活動(dòng),參與者需先后回答兩道選擇題,問(wèn)題A有三個(gè)選項(xiàng),問(wèn)題B有四個(gè)選項(xiàng),每題只有一個(gè)選項(xiàng)是正確的,正確回答問(wèn)題A可獲獎(jiǎng)金1千元,正確回答問(wèn)題B可獲獎(jiǎng)金2千元.活動(dòng)規(guī)定:參與者可任意選擇回答問(wèn)題的順序,如果第一個(gè)問(wèn)題回答正確,則繼續(xù)答題,否則該參與者猜獎(jiǎng)活動(dòng)終止.假設(shè)某參與者在回答問(wèn)題前,選擇每道題的每個(gè)選項(xiàng)的機(jī)會(huì)是等可能的.
(Ⅰ)如果該參與者先回答問(wèn)題A,求其恰好獲得獎(jiǎng)金1千元的概率;
(Ⅱ)試確定哪種回答問(wèn)題的順序能使該參與者獲獎(jiǎng)金額的期望值較大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.平面向量$\overrightarrow{a}$,$\overrightarrow$滿足:$\overrightarrow{a}•\overrightarrow$=4,|$\overrightarrow{a}$-$\overrightarrow$|=3,則|$\overrightarrow{a}$|的最大值是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,且Sn=n2,數(shù)列{bn}為等比數(shù)列.已知a1b1+a2b2+a3b3+…+anbn=(n-1)•3n+1+3.
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)(an+1)•log3bn+2•cn=1,求證:數(shù)列{cn}的前n項(xiàng)和Tn<$\frac{3}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)數(shù)列{an}滿足:a1=1,an+1=an+2,n∈N*,數(shù)列{bn}為等比數(shù)列.已知a1b1+a2b2+a3b3+…+anbn=(n-1)•3n+1+3.
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)設(shè)an•(1+2log3bn)•cn=1,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+1,0≤x<1}\\{{2}^{x-1}-1,1≤x<3}\end{array}\right.$,若存在m,n,當(dāng)0≤m<n<3時(shí),有f(m)=f(n),則nf(m)的取值范圍是( 。
A.[1,3)B.[1,2log23+2)C.[2,3)D.[2,2log23+2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.函數(shù)f(x)是定義在R上的奇函數(shù),且f(x-1)為偶函數(shù),當(dāng)x∈[0,1]時(shí),f(x)=x${\;}^{\frac{1}{2}}$,若g(x)=f(x)-2x-b有三個(gè)零點(diǎn),則實(shí)數(shù)b的取值范圍是( 。
A.(k-$\frac{1}{8}$,k+$\frac{1}{8}$),k∈ZB.(2k-$\frac{1}{8}$,2k+$\frac{1}{8}$),k∈ZC.(4k-$\frac{1}{8}$,4k+$\frac{1}{8}$),k∈ZD.(8k-$\frac{1}{8}$,8k+$\frac{1}{8}$),k∈Z

查看答案和解析>>

同步練習(xí)冊(cè)答案