若a3+b3=2,求證:a+b≤2.

答案:
解析:

思路分析:本題結(jié)論的反面比原結(jié)論更具體,更簡(jiǎn)潔,宜用反證法.

證法一:假設(shè)a+b>2,a2-ab+b2=(ab)2+b2≥0.

而取等號(hào)的條件為a=b=0,顯然不可能,∴a2-ab+b2>0.則a3+b3=(a+b)(a2-ab+b2)>2(a2-ab+b2),而a3+b3=2,故a2-ab+b2<1.

∴1+ab>a2+b2≥2ab.從而ab<1.

∴a2+b2<1+ab<2.

∴(a+b)2=a2+b2+2ab<2+2ab<4.

∴a+b<2.

這與假設(shè)矛盾,故a+b≤2.

證法二:假設(shè)a+b>2,則a>2-b,故2=a3+b3>(2-b)3+b3,即2>8-12b+6b2,即(b-1)2<0,這不可能,從而a+b≤2.

證法三:假設(shè)a+b>2,則(a+b)3=a3+b3+3ab(a+b)>8.

由a3+b3=2,得3ab(a+b)>6.故ab(a+b)>2.

又a3+b3=(a+b)(a2-ab+b2)=2,

∴ab(a+b)>(a+b)(a2-ab+b2).

∴a2-ab+b2<ab,即(a-b)2<0.

這不可能,故a+b≤2.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn且對(duì)任意正整數(shù)n總有Sn=p(an-1)(p為常數(shù),且p≠0,p≠1),數(shù)列{bn}滿足
bn=kn+q(q為常數(shù))
(1)求數(shù)列{an}的首項(xiàng)a1及通項(xiàng)公式(用p表示);
(2)若恰好存在唯一實(shí)數(shù)p使得a1=b1,a3=b3,求實(shí)數(shù)k的取值的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等差數(shù)列{an}的首項(xiàng)為1,其前n項(xiàng)和為Sn,{bn}是公比為正整數(shù)的等比數(shù)列,其首項(xiàng)為3,前n項(xiàng)和為Tn.若a3+b3=17,T3-S3=12.
(1)求{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列{an+
23
bn}的前n項(xiàng)和Mn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文科做)已知等差數(shù)列{an}{和正項(xiàng)等比數(shù)列{bn},a1=b1=1,a3=b3=2.
(1)求an,bn;
(2)設(shè)cn=anbn2,求數(shù)列{cn}的前n項(xiàng)和Sn;
(3)設(shè){an}的前n項(xiàng)和為Tn,是否存在常數(shù)P、c,使an=p+log2(Tn+c)恒成立?若存在,求P、c的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(文科做)已知等差數(shù)列{an}{和正項(xiàng)等比數(shù)列{bn},a1=b1=1,a3=b3=2.
(1)求an,bn;
(2)設(shè)cn=anbn2,求數(shù)列{cn}的前n項(xiàng)和Sn;
(3)設(shè){an}的前n項(xiàng)和為Tn,是否存在常數(shù)P、c,使an=p+log2(Tn+c)恒成立?若存在,求P、c的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年廣東省高考數(shù)學(xué)模擬沖刺試卷(三)(解析版) 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和為Sn且對(duì)任意正整數(shù)n總有Sn=p(an-1)(p為常數(shù),且p≠0,p≠1),數(shù)列{bn}滿足
bn=kn+q(q為常數(shù))
(1)求數(shù)列{an}的首項(xiàng)a1及通項(xiàng)公式(用p表示);
(2)若恰好存在唯一實(shí)數(shù)p使得a1=b1,a3=b3,求實(shí)數(shù)k的取值的集合.

查看答案和解析>>

同步練習(xí)冊(cè)答案