【題目】已知全集I=R,集合A={x∈R|},集合B是不等式2|x+1|<4的解集,求A∩(CIB).

【答案】解:由A:,即≤0,
等價于,解得﹣3<x≤1.
∴A={x∈R|﹣3<x≤1};
又∵由2|x+1|<4,有2|x+1|<22 ,
∴|x+1|<2.
∴﹣2<x+1<2,即﹣3<x<1.
∴B={x∈R|﹣3<x<1}.
∵CIB={x∈R|x≤﹣3,或x≥1},
∴A∩(CIB)={1}.
【解析】分別求解分式不等式及指數(shù)不等式化簡集合A,B,然后利用補集及交集運算得答案.
【考點精析】根據(jù)題目的已知條件,利用指、對數(shù)不等式的解法的相關知識可以得到問題的答案,需要掌握指數(shù)不等式的解法規(guī)律:根據(jù)指數(shù)函數(shù)的性質(zhì)轉(zhuǎn)化;對數(shù)不等式的解法規(guī)律:根據(jù)對數(shù)函數(shù)的性質(zhì)轉(zhuǎn)化.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,設角A,B,C的對邊分別為a,b,c,向量=(cosA,sinA),=(﹣sinA,cosA),若=1.
(1)求角A的大;
(2)若b=4 , 且c=a,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學將100名高二文科生分成水平相同的甲、乙兩個“平行班”,每班50人.陳老師采用A,B兩種不同的教學方式分別在甲、乙兩個班進行教改實驗.為了了解教學效果,期末考試后,陳老師對甲、乙兩個班級的學生成績進行統(tǒng)計分析,畫出頻率分布直方圖(如下圖).記成績不低于90分者為“成績優(yōu)秀”.

(Ⅰ)根據(jù)頻率分布直方圖填寫下面2×2列聯(lián)表;

甲班(A方式)

乙班(B方式)

總計

成績優(yōu)秀

成績不優(yōu)秀

總計

(Ⅱ)判斷能否在犯錯誤的概率不超過0.05的前提下認為:“成績優(yōu)秀”與教學方式有關?

附:.

P(K2k)

0.25

0.15

0.10

0.05

0.025

k

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直四棱柱中,底面四邊形是直角梯形,其中.

(Ⅰ)求證:直線平面

(Ⅱ)試求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)y=f(x)同時滿足:(。⿲τ诙x域內(nèi)的任意x,恒有f(x)+f(﹣x)=0;(ⅱ)對于定義域內(nèi)的任意x1 , x2 , 當x1≠x2時,恒有 , 則稱函數(shù)f(x)為“二維函數(shù)”.現(xiàn)給出下列四個函數(shù):
①f(x)=
②f(x)=﹣x3+x


其中能被稱為“二維函數(shù)”的有 (寫出所有滿足條件的函數(shù)的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), (其中).對于不相等的實數(shù),設 .現(xiàn)有如下命題:

(1)對于任意不相等的實數(shù),都有;

(2)對于任意的a及任意不相等的實數(shù),都有;

(3)對于任意的a,存在不相等的實數(shù),使得;

(4)對于任意的a,存在不相等的實數(shù),使得.

其中的真命題有_____________(寫出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有下列四個命題:

, 互為相反數(shù)的逆命題;

②“若兩個三角形全等,則兩個三角形的面積相等的否命題;

,有實根的逆否命題;

不是等邊三角形,則的三個內(nèi)角相等逆命題;

其中真命題為( )

A. ①② B. ②③ C. ①③ D. ③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過原點的動直線與圓相交于不同的兩點 .

(1)求圓的圓心坐標;

(2)求線段的中點的軌跡的方程;

(3)是否存在實數(shù),使得直線與曲線只有一個交點?若存在,求出的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的多面體中, 平面

.

(Ⅰ)在上求作,使平面,請寫出作法并說明理由;

(Ⅱ)若在平面的正投影為,求四面體的體積.

查看答案和解析>>

同步練習冊答案