13.函數(shù)f(x)=$\sqrt{x-1}+{log_2}$(3-2x)的定義域?yàn)閇1,$\frac{3}{2}$).

分析 根據(jù)函數(shù)f(x)的解析式,列出不等式組,求出解集即可.

解答 解:函數(shù)f(x)=$\sqrt{x-1}+{log_2}$(3-2x),
∴$\left\{\begin{array}{l}{x-1≥0}\\{3-2x>0}\end{array}\right.$,
解得1≤x<$\frac{3}{2}$;
∴f(x)的定義域?yàn)閇1,$\frac{3}{2}$).
故答案為:[1,$\frac{3}{2}$).

點(diǎn)評(píng) 本題考查了根據(jù)函數(shù)解析式求定義域的問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且$\sqrt{3}$acosC=(2b-$\sqrt{3}$c)cosA.
(1)求角A的大;
(2)已知等差數(shù)列{an}的公差不為零,若a1sinA=1,且a2,a4,a8成等比數(shù)列,求{$\frac{4}{{a}_{n}{a}_{n+1}}$}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若x,y滿足約束條件$\left\{\begin{array}{l}x-1≥0\\ x-2y+2≤0\\ x+y-4≤0\end{array}\right.$,則$z=\frac{y}{x}$的取值范圍為[1,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.平行四邊形ABCD中,AB=AD=2,$\overrightarrow{AB}$•$\overrightarrow{AD}$=-2,$\overrightarrow{DM}$+$\overrightarrow{CM}$=$\overrightarrow{0}$,則$\overrightarrow{AB}$•$\overrightarrow{BM}$的值為(  )
A.-4B.4C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知函數(shù)$f(x)=a{log_2}x+b{log_3}x+2且f(\frac{1}{2008})=4,則f(2008)$的值為=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若函數(shù)f(x)滿足:①對(duì)定義域內(nèi)任意x,都有f(x)+f(-x)=0,②對(duì)定義域內(nèi)任意x1,x2,且x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>0,則稱函數(shù)f(x)為“優(yōu)美函數(shù)”.下列函數(shù)中是“優(yōu)美函數(shù)”的是(  )
A.f(x)=$\frac{-{e}^{x}+1}{1+{e}^{x}}$
B.f(x)=ln(1+x)+ln$\frac{1}{-x+1}$
C.f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x-1,x>0}\\{0,x=0}\\{-{x}^{2}+2x+1,x<0}\end{array}\right.$
D.f(x)=tan x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)=$\frac{{x}^{2}+2x+1}{{x}^{2}+1}$,若f(x0)=2016,則f(-x0)=(  )
A.-2013B.-2014C.-2015D.-2016

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的圖象的一個(gè)最高點(diǎn)坐標(biāo)為(1,2),相鄰的對(duì)稱軸與對(duì)稱中心間的距離為2,則下列結(jié)論正確的是(  )
A.f(x)的圖象關(guān)于(2,0)中心對(duì)稱B.f(x)的圖象關(guān)于直線x=3對(duì)稱
C.f(x)在區(qū)間(2,3)上單調(diào)遞增D.f(2017)=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)拋物線C:y2=4x的焦點(diǎn)為F,過(guò)點(diǎn)P(-1,0)作斜率為k(k>0)的直線l與拋物線C交于A,B兩點(diǎn),若$\frac{{|{AF}|}}{{|{BF}|}}=\frac{1}{2}$,則k=(  )
A.$\frac{2}{3}$B.$\frac{{2\sqrt{2}}}{3}$C.1D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案