【題目】在直角坐標(biāo)平面內(nèi),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知曲線的極坐標(biāo)方程為,直線的參數(shù)方程為(為參數(shù)).
(1)分別求出曲線和直線的直角坐標(biāo)方程;
(2)若點(diǎn)在曲線上,且到直線的距離為1,求滿足這樣條件的點(diǎn)的個(gè)數(shù).
【答案】(Ⅰ);(Ⅱ)3個(gè).
【解析】
試題分析:(1)由曲線的極坐標(biāo)方程為,兩邊分別乘以,再根據(jù),即可將極坐標(biāo)方程轉(zhuǎn)化為直角坐標(biāo)方程.由直線的參數(shù)方程為(為參數(shù)),消去參數(shù)t可得直角坐標(biāo)系中的直線方程.
(2)由圓心(2,0)到直線 的距離為1.所以恰為圓半徑的,所以圓上共有3個(gè)點(diǎn)到直線的距離為1.
(1)由得,故曲線的直角坐標(biāo)方程為:,即
;由直線的參數(shù)方程消去參數(shù)得,
即. 4分
(2)因?yàn)閳A心到到直線的距離為,恰為圓半徑的,所以圓上共有3個(gè)點(diǎn)到直線的距離為1. 7分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左焦點(diǎn)為,短軸的兩個(gè)端點(diǎn)分別為A,B,且滿足:,且橢圓經(jīng)過點(diǎn)
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)過點(diǎn)M的動(dòng)直線(與X軸不重合)與橢圓C相交于P,Q兩點(diǎn),在X軸上是否存在一定點(diǎn)T,無論直線如何轉(zhuǎn)動(dòng),點(diǎn)T始終在以PQ為直徑的圓上?若有,求點(diǎn)T的坐標(biāo),若無,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況. 下列敘述中正確的是( )
A. 消耗1升汽油,乙車最多可行駛5千米
B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多
C. 甲車以80千米/小時(shí)的速度行駛1小時(shí),消耗10升汽油
D. 某城市機(jī)動(dòng)車最高限速80千米/小時(shí). 相同條件下,在該市用丙車比用乙車更省油
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,PA⊥底面ABCD,AD||BC,AD⊥CD,BC=2,AD=CD=1,M是PB的中點(diǎn).
(1)求證:AM||平面PCD;
(2)求證:平面ACM⊥平面PAB;
(3)若PC與平面ACM所成角為30°,求PA的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知小張每次射擊命中十環(huán)的概率都為40%,現(xiàn)采用隨機(jī)模擬的方法估計(jì)小張三次射擊恰有兩次命中十環(huán)的概率,先由計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定2,4,6,8表示命中十環(huán),0,1,3,5,7,9表示未命中十環(huán),再以每三個(gè)隨機(jī)數(shù)為一組,代表三次射擊的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):
321 421 292 925 274 632 800 478 598 663 531 297 396
021 506 318 230 113 507 965
據(jù)此估計(jì),小張三次射擊恰有兩次命中十環(huán)的概率為()
A. 0.25B. 0.30C. 0.35D. 0.40
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小趙和小王約定在早上至之間到某公交站搭乘公交車去上學(xué),已知在這段時(shí)間內(nèi),共有班公交車到達(dá)該站,到站的時(shí)間分別為,,如果他們約定見車就搭乘,則小趙和小王恰好能搭乘同一班公交車去上學(xué)的概率為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某家庭進(jìn)行理財(cái)投資,根據(jù)長期收益率市場預(yù)測,投資債券等穩(wěn)健型產(chǎn)品的收益與投資額成正比,投資股票等風(fēng)險(xiǎn)型產(chǎn)品的收益與投資額的算術(shù)平方根成正比.已知投資1萬元時(shí)兩類產(chǎn)品的收益分別為0.125萬元和0.5萬元。
(1)分別寫出兩類產(chǎn)品的收益與投資額的函數(shù)關(guān)系式;
(2)該家庭現(xiàn)有20萬元資金,全部用于理財(cái)投資,怎樣分配資金才能獲得最大收益?其最大收益為多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱臺(tái)中, 側(cè)面與側(cè)面是全等的梯形,若,且.
(Ⅰ)若, ,證明: ∥平面;
(Ⅱ)若二面角為,求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】時(shí)下,租車自駕游已經(jīng)比較流行了.某租車點(diǎn)的收費(fèi)標(biāo)準(zhǔn)為:不超過天收費(fèi)元,超過天的部分每天收費(fèi)元(不足天按天計(jì)算).甲、乙兩人要到該租車點(diǎn)租車自駕到某景區(qū)游覽,他們不超過天還車的概率分別為和,天以上且不超過天還車的概率分別為和,兩人租車都不會(huì)超過天.
(1)求甲所付租車費(fèi)比乙多的概率;
(2)設(shè)甲、乙兩人所付的租車費(fèi)之和為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com