⑴ 寫出三個(gè)不同的自然數(shù),使得其中任意兩個(gè)數(shù)的乘積與10的和都是完全平方數(shù),請(qǐng)予以驗(yàn)證;
⑵ 是否存在四個(gè)不同的自然數(shù),使得其中任意兩個(gè)數(shù)的乘積與10的和都是完全平方數(shù)?請(qǐng)證明你的結(jié)論.
(Ⅰ) 2,3,13 (Ⅱ)略
:對(duì)于任意n∈N*,n2≡0,1(mod 4).設(shè)a,b是兩個(gè)不同的自然數(shù),①若a≡0(mod 4)或b≡0(mod 4),或a≡b≡2(mod 4),均有ab≡0(mod 4),此時(shí),ab+10≡2(mod 4),故ab+10不是完全平方數(shù);② 若a≡b≡1(mod 4),或a≡b≡3(mod 4),則ab≡1(mod 4),此時(shí)ab+10≡3(mod 4),故ab+10不是完全平方數(shù).由此知,ab+10是完全平方數(shù)的必要不充分條件是ab(mod 4)且a與b均不能被4整除.
⑴ 由上可知,滿足要求的三個(gè)自然數(shù)是可以存在的,例如取a=2,b=3,c=13,則2×3+10=42,2×13+10=62,3×13+10=72.即2,3,13是滿足題意的一組自然數(shù).
⑵ 由上證可知不存在滿足要求的四個(gè)不同自然數(shù).
這是因?yàn),任?個(gè)不同自然數(shù),若其中有4的倍數(shù),則它與其余任一個(gè)數(shù)的積加10后不是完全平方數(shù),如果這4個(gè)數(shù)都不是4的倍數(shù),則它們必有兩個(gè)數(shù)mod 4同余,這兩個(gè)數(shù)的積加10后不是完全平方數(shù).故證.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
k | x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:不詳 題型:解答題
k |
x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:《第1章 集合與函數(shù)概念》2010年單元測(cè)試卷3(大綱版)(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com