精英家教網 > 高中數學 > 題目詳情
對任意實數x,若不等式|x+1|+|x-2|>k恒成立,則k的取值范圍是( )
A.k<1
B.k<-3
C.k>1
D.k>3
【答案】分析:首先分析題目已知不等式|x+1|+|x-2|>k恒成立,求k的取值范圍,即需要k小于|x+1|+|x-2|的最小值即可.對于求|x+1|+|x-2|的最小值,可以分析它幾何意義:在數軸上點x到點-1的距離加上點x到點2的距離.分析得當x在-1和2之間的時候,取最小值,即可得到答案.
解答:解:已知不等式|x+1|+|x-2|>k恒成立,即需要k小于|x+1|+|x-2|的最小值即可.
故設函數y=|x+1|+|x-2|. 設-1、2、x在數軸上所對應的點分別是A、B、P.
則函數y=|x+1|+|x-2|的含義是P到A的距離與P到B的距離的和.
可以分析到當P在A和B的中間的時候,距離和為線段AB的長度,此時最。
即:y=|x+1|+|x-2|=|PA|+|PB|≥|AB|=3.即|x+1|+|x-2|的最小值為3.
即:k>3.
故選擇D.
點評:此題主要考查不等式恒成立的問題,其中涉及到絕對值不等式求最值的問題,對于y=|x-a|+|x-b|類型的函數可以用分析幾何意義的方法求最值.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知p:方程x2+mx+1=0有兩個不等的負實根;q:對任意實數x不等式4x2+4(m-2)x+1>0恒成立,若p或q為真,p且q為假,求實數m的取值范圍..

查看答案和解析>>

科目:高中數學 來源: 題型:

若m∈R,命題p:設x1和x2是方程x2-ax-3=0的兩個實根,不等m2-2m-4≥|x1-x2|對任意實數a∈[-2,2]恒成立命題q:“4x+m<0”是“x2-x-2>0”的充分不必要條件.求使p且¬q為真命題的m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知p:方程x2+mx+1=0有兩個不等的負實根;q:對任意實數x不等式4x2+4(m-2)x+1>0恒成立,若p或q為真,p且q為假,求實數m的取值范圍..

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知p:方程x2+mx+1=0有兩個不等的負實根;q:對任意實數x不等式4x2+4(m-2)x+1>0恒成立,若p或q為真,p且q為假,求實數m的取值范圍..

查看答案和解析>>

科目:高中數學 來源:2010-2011學年甘肅省武威五中高三(上)期中數學試卷(文科)(解析版) 題型:解答題

已知p:方程x2+mx+1=0有兩個不等的負實根;q:對任意實數x不等式4x2+4(m-2)x+1>0恒成立,若p或q為真,p且q為假,求實數m的取值范圍..

查看答案和解析>>

同步練習冊答案