設(shè)a為實(shí)數(shù),函數(shù)f(x)=2x2+(x-a)|x-a|.
(1)若f(0)≥1,求a的取值范圍;
(2)求f(x)的最小值;
(3)設(shè)函數(shù)h(x)=f(x),x∈(a,+∞),求不等式h(x)≥1的解集.
【答案】分析:(1)f(0)≥1⇒-a|a|≥1再去絕對(duì)值求a的取值范圍,
(2)分x≥a和x<a兩種情況來(lái)討論去絕對(duì)值,再對(duì)每一段分別求最小值,借助二次函數(shù)的對(duì)稱軸及單調(diào)性.最后綜合即可.
(3)h(x)≥1轉(zhuǎn)化為3x2-2ax+a2-1≥0,因?yàn)椴坏仁降慕饧蓪?duì)應(yīng)方程的根決定,所以再對(duì)其對(duì)應(yīng)的判別式分三種情況討論求得對(duì)應(yīng)解集即可.
解答:解:(1)若f(0)≥1,則-a|a|≥1⇒⇒a≤-1
(2)當(dāng)x≥a時(shí),f(x)=3x2-2ax+a2,∴
如圖所示:

當(dāng)x≤a時(shí),f(x)=x2+2ax-a2


綜上所述:
(3)x∈(a,+∞)時(shí),h(x)≥1,
得3x2-2ax+a2-1≥0,△=4a2-12(a2-1)=12-8a2
當(dāng)a≤-或a≥時(shí),△≤0,x∈(a,+∞);
當(dāng)-<a<時(shí),△>0,得:

綜上可得,
當(dāng)a∈(-∞,-)∪(,+∞)時(shí),不等式組的解集為(a,+∞);
當(dāng)a∈(-,-)時(shí),不等式組的解集為(a,]∪[,+∞);
當(dāng)a∈[-,]時(shí),不等式組的解集為[,+∞).
點(diǎn)評(píng):本題考查了分段函數(shù)的最值問(wèn)題.分段函數(shù)的最值的求法是先對(duì)每一段分別求最值,最后綜合最大的為整個(gè)函數(shù)的最大值,最小的為整個(gè)函數(shù)的最小值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a為實(shí)數(shù),函數(shù)f(x)=x3-ax2+(a2-1)x在(-∞,0)和(1,+∞)都是增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a為實(shí)數(shù),函數(shù)f(x)=x2-|x-a|+1,x∈R.
(1)若f(x)是偶函數(shù),試求a的值;
(2)在(1)的條件下,求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a為實(shí)數(shù),函數(shù)f(x)=2x2+(x-a)|x-a|
(1)求f(a+1);
(2)若a=3,用分段函數(shù)的形式表示f(x),并求出f(x)的最小值;
(3)求f(x)的最小值g(a).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a為實(shí)數(shù),函數(shù)f(x)=ex-2x+2a,x∈R.求f(x)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a為實(shí)數(shù),函數(shù)f(x)=x3+ax2+(a-2)x的導(dǎo)函數(shù)是f'(x)是偶函數(shù),則曲線y=f(x)在原點(diǎn)處的切線方程為
y=-2x
y=-2x

查看答案和解析>>

同步練習(xí)冊(cè)答案